######################################################
# Power analysis - Multiple regression
######################################################
#' @name RM.pwr.f2.test
#'
#' @title RM.pwr.f2.test
#'
#' @description This function calculates the effective number of participants in a power analysis for multiple
#' regression after considering the effect of the number of measurement for each dependent variable
#' and the intra-class correlation of these measurements.
#'
#' @param f2 Cohen's f2 effect size
#' @param sig.level Alpha level
#' @param power Desired statistical power
#' @param npred Number of predictors
#' @param corr Intra-class correlation between the replicated measurements.
#' @param m Number of replicated measurements.
#'
#' @details The function returns the effective number of participants to attain the specified
#' statistical power. You do not need to specify that n is NULL. For more details about this
#' statistical power adjustment, see Goulet & Cousineau (2019).
#'
#' @examples
#'# Calculating the effective sample size required for a multiple regression.
#'# Intra-class correlation is .25 and number of replicated measurements is 7.
#'
#'RM.pwr.f2.test(
#' f2 = 0.1, # Want to detect a Cohen's f^2 of 0.1
#' npred = 4,
#' sig.level = .01,
#' power = .80,
#' corr = .25,
#' m = 7
#')
#'
#' @references Goulet, M.A. & Cousineau, D. (2019). The power of replicated measures to increase
#' statistical power. Advances in Methods and Practices in Psychological Sciences, 2(3), 199-213.
#' DOI:10.1177/2515245919849434
#'
#' @seealso \code{\link[pwr]{pwr.f2.test}}
#'
#' @import pwr
#' @export RM.pwr.f2.test
##############################
# 0. List of required packages
##############################
require("pwr")
####################################
# 1. Function for multiple regression
####################################
# List of arguments
RM.pwr.f2.test <- function(
f2 = NULL, # Cohen f2
npred = NULL, # number of predictors
sig.level = NULL, # Alpha level
power = NULL, # Statistical power
corr = NULL, # intra-class correlation
m = NULL, # number of measurements
...
)
{
#########################################
# 1.1 Check if all the arguments are here
#########################################
if((hasArg(f2)==FALSE))
stop("Please use Cohen's f^2 effect size.")
if(is.null(f2)==TRUE)
stop("Missing argument f2")
if(is.null(npred)==TRUE)
stop("Missing argument npred")
if(is.null(sig.level)==TRUE)
stop("Missing argument sig.level")
if(is.null(power)==TRUE)
stop("Missing argument power")
if(is.null(corr)==TRUE)
stop("Missing argument corr")
if(is.null(m)==TRUE)
stop("Missing argument m")
if((hasArg(v)==TRUE))
print("You do not need to specify the argument v in this function. It is always NULL.",quote=FALSE)
# Other error messages are already programmed in the pwr package.
###################################################
# 2. Calculate number of subject using package pwr
###################################################
findn1 <- pwr.f2.test(
f2 = f2,
u = npred,
v = NULL,
sig.level = sig.level,
power = power
)
##############################################
# 3. Find the effective number of participants
##############################################
# This uses the equation of Goulet & Cousineau (2019)
n1 <- findn1$v + npred + 1 # pwr function calculates df, not sample size
nm <- corr*n1 + (1-corr)*((n1-1)/m+1)
######################################
# 4. Print the number of participants
#####################################
print(sprintf("Number of participants in total is %s",ceiling(nm)),quote=FALSE)
invisible(list("n1"=n1, "nm"=nm))
}
##################
# END OF FUNCTION
##################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.