Description Usage Arguments Value Examples
Compute the universal preidction expected improvement
1 2  | 
x | 
 points of the design space in which the criterion will be computed  | 
model | 
 the surrogate model  | 
plugin | 
 the current minimum value  | 
alpha | 
 a parameter for exploration term  | 
up_method | 
 type of computation, default "Empirical". Other options: "UP_reg" regularized emprirical or "assume_gauss" regularize UP as Gaussian ditribution.  | 
envir | 
 envirement variable  | 
the value of the UP expected improvement
1 2 3 4 5 6 7 8 9  | #' library(UP)
d            <- 2
n            <- 16
X            <- expand.grid(x1=s <- seq(0,1, length=5), x2=s)
Xtest        <- expand.grid(x1=seq(0,1,length=6), x2=seq(0,1,length=6))
Y            <- apply(X, 1, branin)
upsm         <- UPSM$new(sm= krigingsm$new(), UP=UPClass$new(X,Y,Scale =TRUE))
crit         <- UPEI(x= t(Xtest), model=upsm,plugin=min(Y)) 
print(max(crit))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.