View source: R/explore_var_contrib.R
explore_var_contrib | R Documentation |
Exploration of variable contribution to Maxent models based on metrics of contribution percentage, permutation importance, and a jackknife analysis.
explore_var_contrib(occ, M_variables, maxent.path, reg.mult = 1,
f.clas = NULL, max.memory = 1000, args = NULL,
plot = TRUE, verbose = TRUE)
plot_contribution(contribution_list, col.cont = "gray25",
col.imp = "gray25", col.with = "gray15",
col.without = "gray65", col.all = "gray1")
occ |
a data.frame with occurrence records. If |
M_variables |
RasterStack or data.frame. If RasterStack, object containing
the variables to be used for modeling. If data.frame (SWD), columns must be:
"background", "longitude", "latitude", and a column for each of the variables
of interest. If data.frame, |
maxent.path |
(character) the path were maxent.jar file is in your computer. |
reg.mult |
(numeric vector) regularization multiplier(s) to be evaluated. |
f.clas |
(character) feature classes can be selected from five different combination sets or manually. Combination sets are: "all", "basic", "no.t.h", "no.h", and "no.t". Default = "all". basic = "l", "lq", "lqp", "lqpt", "lqpth". Combinations "no.t.h", "no.h", and "no.t", exclude t and/or h. See details for all the available potential combinations of feature classes. |
max.memory |
(numeric) maximum memory (in megabytes) to be used by Maxent while creating the models. Default = 1000. |
args |
(character) additional arguments that can be passed to Maxent. See the Maxent help for more information on how to write these arguments, default = NULL. Note that some arguments cannot be changed here because they are part of the parameters of the function already. See details for other options. |
sample.size |
(numeric) number of points to represent the background for the model. Default = 10000 |
plot |
(logical) whether to produce a default plot of results. |
verbose |
(logical) whether to print messages; default = TRUE. |
contribution_list |
a list of results obtained with
|
col.cont |
color of contribution bars; default = "gray25". |
col.imp |
color of importance bars; default = "gray25". |
col.with |
color of regularized training gain bars when using individual variables; default = "gray15". |
col.without |
color of regularized training gain bars when using all variables except the one in question; default = "gray65". |
col.all |
color of line representing regularized training gain of the model using all variables; default = "gray1". |
All potential combinations of feature classes (l = linear, q = quadratic, p = product, t = threshold, and h = hinge) are: "l", "q", "p", "t", "h", "lq", "lp", "lt", "lh", "qp", "qt", "qh", "pt", "ph", "th", "lqp", "lqt", "lqh", "lpt", "lph", "lth", "qpt", "qph", "qth", "pth", "lqpt", "lqph", "lqth", "lpth", "qpth", and "lqpth".
The way to include further arguments is as follows: args = "biasfile=COMPLETE_PATH\bias.asc biastype=3" in windows, or args = "biasfile=COMPLETE_PATH/bias.asc biastype=3" in Unix based systems. If the path contains spaces the way to write it is: args = "biasfile=\"COMPLETE PATH\bias.asc\" biastype=3" in windows, or args = "biasfile=\"COMPLETE PATH/bias.asc\" biastype=3" in Unix based systems.
Other options that can be included in args are all "Flags" from the following list:
Flag | Abbrv | Type | Default | Meaning
maximumbackground | MB | integer | 10000 | If the number of background points / grid cells is larger than this number, then this number of cells is chosen randomly for background points.
togglelayertype | t | string | | Toggle continuous/categorical for environmental layers whose names begin with this prefix (default: all continuous).
biasfile | | file | | Sampling is assumed to be biased according to the sampling distribution given in this grid file. Values in this file must not be zero or negative. MaxEnt will factor out the bias. We recomend to create this file as a kernell density of geographic points representing all localities were samplings of similar organisms have been performed (multiply this layer by 1000 and round it to reduce number of decimals). IMPORTANT: A biasfile must be included with its entire path, as indicated above above.
biastype | | integer | | If biasfile is defined, this integer needs to be definef depending on the type of bias added. If the bias file is prepared as recomended, biastype=3.
writebackgroundpredictions | | boolean | FALSE | Write .csv file with predictions at background points.
maximumiterations | m | integer | 500 | Stop training after this many iterations of the optimization algorithm.
convergencethreshold | c | double | 0.00001 | Stop training when the drop in log loss per iteration drops below this number.
threads | | integer | 1 | Number of processor threads to use. Matching this number to the number of cores on your computer speeds up some operations, especially variable jackknifing.
logfile | | string | maxent.log | File name to be used for writing debugging information about a run in output directory.
cache | | boolean | TRUE | Make a .mxe cached version of ascii files, for faster access.
defaultprevalence | | double | 0.5 | Default prevalence of the species: probability of presence at ordinary occurrence points. See Elith et al., Diversity and Distributions, 2011 for details.
Other more advanced arguments are (use these ones only if you understand them completely):
lq2lqptthreshold | | integer | 80 | Number of samples at which product and threshold features start being used.
l2lqthreshold | | integer | 10 | Number of samples at which quadratic features start being used.
hingethreshold | | integer | 15 | Number of samples at which hinge features start being used.
beta_threshold | | double | -1 | Regularization parameter to be applied to all threshold features; negative value enables automatic setting.
beta_categorical | | double | -1 | Regularization parameter to be applied to all categorical features; negative value enables automatic setting.
beta_lqp | | double | -1 | Regularization parameter to be applied to all linear, quadratic and product features; negative value enables automatic setting.
beta_hinge | | double | -1 | Regularization parameter to be applied to all hinge features; negative value enables automatic setting.
A list with results of variable contribution, permutation importance, and
jackknife results. If plot
= TRUE results are plotted as horizontal
bars using plot_contribution
.
# data
data("sp_joint", package = "kuenm")
occ <- data.frame(Species = "A_americanum", sp_joint)
mvars <- raster::stack(list.files(system.file("extdata", package = "kuenm"),
pattern = "Mbio_", full.names = TRUE))
# analysis
var_cont <- explore_var_contrib(occ = occ, M_variables = mvars,
maxent.path = "C:/Maxent/3.4.1", plot = FALSE)
# plot
plot_contribution(var_cont)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.