kuenm_aicc: AICc calculation for Maxent models

kuenm_aiccR Documentation

AICc calculation for Maxent models

Description

kuenm_aicc calculates the Akaike information criterion corrected for small sample sizes (AICc) for single or multiple models produced with Maxent.

Usage

kuenm_aicc(occ, model, npar)

Arguments

occ

matrix or data.frame with coordinates of the occurrences used to create the model (raster) to be evaluated; columns must be: longitude and latitude.

model

a RasterLayer or RasterStack of model projections created using Maxent with raw outputs.

npar

(numeric) number of parameters for model. Length must correspond with number of layers in model. See function n_par.

Details

Calculations are done following Warren and Seifert (2011).

Value

A data.frame containing values of AICc, delta AICc, weight of AICc, and number of parameters. The number of rows of the data.frame corresponds to the number of models evaluated.

See Also

aicc for results obtained using the SWD format.

Examples

data("sp_joint", package = "kuenm")
model <- raster::raster(system.file("extdata/sp_model_joint.tif",
                                             package = "kuenm"))

lbds <- readLines(system.file("extdata/lambdas_model_joint.lambdas",
                              package = "kuenm"))
npar <- n_par(lbds) # counting number of parameters

aicc <- kuenm_aicc(occ = sp_joint, model = model, npar = npar)

manubio13/ku.enm documentation built on Jan. 5, 2024, 5:55 a.m.