View source: R/model-MuSyC-utils.R
MuSyC_si_to_hi | R Documentation |
This can be used for setting priors and interpreting parameter estimates
MuSyC_si_to_hi(si, Ci, E0, Ei)
si |
|
Ci |
|
E0 |
|
Ei |
|
Claim: When d1=0
and d2=C2
then the gradient of the response
with respect to d2
is the s2
, symbolically d(Ed)/d(d2) = s2
where
s2 = h2 * (E0 + E2) / (4 * C2)
then
d(Ed)/d(d2) = d/d(d2) (C1^h1 * C2^h2 * E0 + C1^h1 * d2^h2 * E2) / (C1^h1 * C2^h2 + C1^h1 * d2^h2)
Cancel the C1^h1
terms:
= d/d(d2) (C2^h2 * E0 + d2^h2 * E2) / (C2^h2 + d2^h2)
Distribute the derivative across the terms in the numerator
= E0 * C2^h2 * (d/d(d2) 1 / (C2^h2 + d2^h2)) + E2 * (d/d(d2) d2^h2 / (C2^h2 + d2^h2)) = E0 * C2^h2 * (h2 * d2^(h2-1) / (C2^h2 + d2^h2)^2) + E2 * (C2^h2 * h2 * d2^(h2-1) / (C2^h2 + d2^h2)^2) = (E0 + E2) * C2^h2 * h2 * d2^(h2-1)/(C2^h2 + d2^h2)^2
Evaluate at d2 = C2
:
= (E0 + E2) * h2 * C2^(2*h2-1) / (4*C2^(2*h2))) = h2 * (E0 + E2) / (4 * C2)
hi numeric
value of the exponent in the MuSyC equation for
drug i
MuSyC_hi_to_si
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.