growth_richards | R Documentation |
Functional form for the Richards growth model.
response(time) = K0 + (K - K0)/( 1 + nu * exp( 1 + nu + rate/(K - K0) * (1 + nu)^(1 + 1/nu) * (lambda - time))) ^ (1/nu)
The parameterization follows (Zwietering, 1990) and grofit:
K = **carrying capacity**, `K = response(time = Inf)`. The \pkg{grofit} package calls this parameter `A`. `K` has the same units as the `response`. K0 = **initial population size** `K0 = response(time = 0)`. The \pkg{grofit} package assumes `K0=0`. `K0` has the same units as the `response`. rate = **maximum growth rate** `rate = max[d(response)/d(time)]`. The \pkg{grofit} package calls this `mu`. `rate` has the units of `response/time` lambda = **duration of the lag-phase** the time point at which the tangent through the growth curve when it achieves the maximum growth rate crosses the initial population size `K0`. (see Figure 2 in (Kahm et al., 2010)). nu = **growth asymmetry** before and after the inflection
growth_richards(K, K0, rate, lambda, nu, time)
K |
|
K0 |
|
rate |
|
lambda |
|
nu |
|
time |
|
numeric
response given the time and parameters
Zwietering M. H., Jongenburger I., Rombouts F. M., van 't Riet K., (1990) Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol., 56(6), 1875-1881 https://doi.org/10.1128/aem.56.6.1875-1881.1990
Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., & Kschischo, M. (2010). grofit: Fitting Biological Growth Curves with R. J. Stat. Softw., 33(7), 1–21. https://doi.org/10.18637/jss.v033.i07
## Not run:
# Generate Richards growth curve
data <- data.frame(
time = seq(0, 2, length.out = 101)) |>
dplyr::mutate(
response = stats::rnorm(
n = length(time),
mean = BayesPharma::growth_richards(
K = 1,
K0 = 0,
rate = 2,
lambda = 0.5,
nu = 2,
time = time),
sd = .2))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.