#' Calculate accessibility statistics
#'
#' Accessibility is the ease with which larger cities can be reached from a
#' certain location. This function allows to efficiently calculate accessibility
#' statistics (i.e. travel time to nearby major cities) for polygons. For each
#' polygon, the desired statistic/s (mean, median or sd) is/are returned.
#'
#' The required resources for this indicator are:
#' - [nelson_et_al]
#'
#' @name traveltime
#' @param engine The preferred processing functions from either one of "zonal",
#' "extract" or "exactextract" as character.
#' @param stats Function to be applied to compute statistics for polygons either
#' single or multiple inputs as character. Supported statistics are: "mean",
#' "median", "sd", "min", "max", "sum" "var".
#' @keywords indicator
#' @returns A function that returns an indicator tibble with city ranges and
#' statistics as variable and corresponding values (in minutes) as value.
#' @include register.R
#' @export
#' @examples
#' \dontshow{
#' mapme.biodiversity:::.copy_resource_dir(file.path(tempdir(), "mapme-data"))
#' }
#' \dontrun{
#' library(sf)
#' library(mapme.biodiversity)
#'
#' outdir <- file.path(tempdir(), "mapme-data")
#' dir.create(outdir, showWarnings = FALSE)
#'
#' mapme_options(
#' outdir = outdir,
#' verbose = FALSE
#' )
#'
#' aoi <- system.file("extdata", "sierra_de_neiba_478140_2.gpkg",
#' package = "mapme.biodiversity"
#' ) %>%
#' read_sf() %>%
#' get_resources(get_nelson_et_al(ranges = "100k_200k")) %>%
#' calc_indicators(
#' calc_traveltime(engine = "extract", stats = c("min", "max"))
#' ) %>%
#' portfolio_long()
#'
#' aoi
#' }
calc_traveltime <- function(engine = "extract", stats = "mean") {
engine <- check_engine(engine)
stats <- check_stats(stats)
function(x,
nelson_et_al = NULL,
name = "traveltime",
mode = "asset",
aggregation = "stat",
verbose = mapme_options()[["verbose"]]) {
if (is.null(nelson_et_al)) {
return(NULL)
}
# set max value of 65535 to NA
nelson_et_al <- clamp(nelson_et_al, lower = -Inf, upper = 65534, values = FALSE)
results <- select_engine(
x = x,
raster = nelson_et_al,
stats = stats,
engine = engine,
name = "traveltime",
mode = "asset"
)
distances <- unlist(
lapply(
names(nelson_et_al),
function(x) strsplit(x, "-|.tif")[[1]][2]
)
)
results %>%
dplyr::mutate(distances = distances) %>%
tidyr::pivot_longer(-distances, names_to = "variable") %>%
dplyr::mutate(
datetime = as.POSIXct("2015-01-01T00:00:00Z"),
variable = paste0(distances, "_", variable),
unit = "minutes"
) %>%
dplyr::select(datetime, variable, unit, value)
}
}
register_indicator(
name = "traveltime",
description = "Statistics of traveltime to the closests city grouped by city category",
resources = "nelson_et_al"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.