Description Usage Arguments References Examples
View source: R/dt_growth_soVB.R
dt_growth_soVB calculates length at time 2, given 
length at time 1 according to the seasonally oscillationg 
von Bertalanffy growth function
1  | dt_growth_soVB(Linf, K, ts, C, L1, t1, t2)
 | 
Linf | 
 Infinite length  | 
K | 
 growth constant  | 
ts | 
 summer point. Time of year (between 0 and 1) when growth oscillation cycle begins (sine wave term becomes positive). Note that this definition differs from some interpretations of the model (see Somers 1998)  | 
C | 
 oscillation strength. Varies between 0 and 1  | 
L1 | 
 Length at t1  | 
t1 | 
 time 1  | 
t2 | 
 time 2  | 
Somers, I. F. (1988). On a seasonally oscillating growth function. Fishbyte, 6(1), 8-11.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  | # Growth parameters
Linf = 100
K = 0.5
ts = 0.5
C = 0.75
# create dataframe
df <- data.frame(t = seq(0,5,0.2), L=NaN)
df$L[1] <- 10 # intial size
# run iterative model
for(i in 2:nrow(df)){
  df$L[i] <- dt_growth_soVB(
    Linf, K, ts, C, 
    L1=df$L[i-1],
    t1=df$t[i-1],
    t2=df$t[i]
  )
}
# plot result
plot(L ~ t, df)
arrows(
  x0 = df$t[-nrow(df)], y0 = df$L[-nrow(df)],
  x1 = df$t[-1], y1 = df$L[-1],
  col = 8, length = 0.15
)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.