virtualPop: Virtual fish population

Description Usage Arguments Value References Examples

View source: R/virtualPop.R

Description

See dt_growth_soVB for information on growth function. The model creates variation in growth based on a mean phi prime value for the population, which describes relationship between individual Linf and K values. See Vakily (1992) for more details.

Usage

1
2
3
4
5
6
7
8
virtualPop(tincr = 1/12, K.mu = 0.5, K.cv = 0.1, Linf.mu = 80,
  Linf.cv = 0.1, ts = 0.5, C = 0.75, LWa = 0.01, LWb = 3,
  Lmat = 40, wmat = 8, rmax = 10000, beta = 1, repro_wt = c(0, 0,
  0, 1, 0, 0, 0, 0, 0, 0, 0, 0), M = 0.7, harvest_rate = M,
  L50 = 0.25 * Linf.mu, wqs = L50 * 0.2, bin.size = 1, timemin = 0,
  timemax = 10, timemin.date = as.Date("1980-01-01"), N0 = 5000,
  fished_t = seq(timemin + 5, timemax, tincr), lfqFrac = 1,
  progressBar = TRUE)

Arguments

tincr

time increment for simulation (default = 1/12; i.e. 1 month)

K.mu

mean K (growth parameter from von Bertalanffy growth function)

K.cv

coefficient of variation on K

Linf.mu

mean Linf (infinite length parameter from von Bertalanffy growth function)

Linf.cv

coefficient of variation on Linf

ts

summer point (range 0 to 1) (parameter from seasonally oscillating von Bertalanffy growth function)

C

strength of seasonal oscillation (range 0 to 1) (parameter from seasonally oscillating von Bertalanffy growth function)

LWa

length-weight relationship constant 'a' (W = a*L^b). Model assumed length in cm and weight in kg.

LWb

length-weight relationship constant 'b' (W = a*L^b). Model assumed length in cm and weight in kg.

Lmat

length at maturity (where 50% of individuals are mature)

wmat

width between 25% and 75% quantiles for Lmat

rmax

parameter for Beverton-Holt stock recruitment relationship (see srrBH)

beta

parameter for Beverton-Holt stock recruitment relationship (see srrBH)

repro_wt

weight of reproduction (vector of monthly reproduction weight)

M

natural mortality

harvest_rate

Fishing mortality (i.e. 'F')

L50

minimum length of capture (in cm). Where selectivity equals 0.5. Assumes logistic ogive typical of trawl net selectivity.

wqs

width of selectivity ogive (in cm)

bin.size

resulting bin size for length frequencies (in cm)

timemin

time at start of simulation (in years). Typically set to zero.

timemax

time at end of simulation (in years).

timemin.date

date corresponding to timemin (of "Date" class)

N0

starting number of individuals

fished_t

times when stock is fished

lfqFrac

fraction of fished stock that are sampled for length frequency data (default = 0.1).

progressBar

Logical. Should progress bar be shown in console (Default=TRUE)

Value

a list containing growth parameters and length frequency object

References

Vakily, J.M., 1992. Determination and comparison of bivalve growth, with emphasis on Thailand and other tropical areas. WorldFish.

Munro, J.L., Pauly, D., 1983. A simple method for comparing the growth of fishes and invertebrates. Fishbyte 1, 5-6.

Pauly, D., Munro, J., 1984. Once more on the comparison of growth in fish and invertebrates. Fishbyte (Philippines).

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
set.seed(1)
res <- virtualPop(rmax = 1e4)
names(res)

op <- par(mfcol=c(2,1), mar=c(4,4,1,1))
plot(N ~ dates, data=res$pop, t="l", ylim=c(0, max(N)))
plot(B ~ dates, data=res$pop, t="l", ylim=c(0, max(B)), ylab="B, SSB")
lines(SSB ~ dates, data=res$pop, t="l", lty=2)
par(op) 

pal <- colorRampPalette(c("grey30",5,7,2), bias=2)
with(res$lfqbin, image(x=dates, y=midLengths, z=t(catch), col=pal(100)))

### biased results with single monthly sample
inds <- res$inds[[1]]
plot(mat ~ L, data = inds, pch=".", cex=5, col=rgb(0,0,0,0.05))
fit <- glm(mat ~ L, data = inds, family = binomial(link = "logit"))
summary(fit)

newdat <- data.frame(L = seq(min(inds$L), max(inds$L), length.out=100))
newdat$pmat <- pmat_w(newdat$L, Lmat = 40, wmat=40*0.2)
pred <- predict(fit, newdata=newdat, se.fit=TRUE)

# Combine the hypothetical data and predicted values
newdat <- cbind(newdat, pred)
# Calculate confidence intervals
std <- qnorm(0.95 / 2 + 0.5)
newdat$ymin <- fit$family$linkinv(newdat$fit - std * newdat$se.fit)
newdat$ymax <- fit$family$linkinv(newdat$fit + std * newdat$se.fit)
newdat$fit <- fit$family$linkinv(newdat$fit)  # Rescale to 0-1

plot(mat ~ L, data = inds, pch=".", cex=5, col=rgb(0,0,0,0.05))
lines(pmat ~ L, newdat, col=8, lty=3)
polygon(
  x = c(newdat$L, rev(newdat$L)),
  y = c(newdat$ymax, rev(newdat$ymin)),
  col = adjustcolor(2, alpha.f = 0.3),
  border = adjustcolor(2, alpha.f = 0.3)
)
lines(fit ~ L, newdat, col=2)

lrPerc <- function(alpha, beta, p) (log(p/(1-p))-alpha)/beta
( L50 <- lrPerc(alpha=coef(fit)[1], beta=coef(fit)[2], p=0.5) )
lines(x=c(L50,L50,0), y=c(-100,0.5,0.5), lty=2, col=2)
text(x=L50, y=0.5, labels = paste0("L50 = ", round(L50,2)), pos=4, col=2 )



### all samples combined
inds <- do.call("rbind", res$inds)
plot(mat ~ L, data = inds, pch=".", cex=5, col=rgb(0,0,0,0.05))
fit <- glm(mat ~ L, data = inds, family = binomial(link = "logit"))
summary(fit)

newdat <- data.frame(L = seq(min(inds$L), max(inds$L), length.out=100))
newdat$pmat <- pmat_w(newdat$L, Lmat = 40, wmat=40*0.2)
pred <- predict(fit, newdata=newdat, se.fit=TRUE)
# Combine the hypothetical data and predicted values
newdat <- cbind(newdat, pred)
# Calculate confidence intervals
std <- qnorm(0.95 / 2 + 0.5)
newdat$ymin <- fit$family$linkinv(newdat$fit - std * newdat$se.fit)
newdat$ymax <- fit$family$linkinv(newdat$fit + std * newdat$se.fit)
newdat$fit <- fit$family$linkinv(newdat$fit)  # Rescale to 0-1

plot(mat ~ L, data = inds, pch=".", cex=5, col=rgb(0,0,0,0.05))
lines(pmat ~ L, newdat, col=8, lty=3)
polygon(
  x = c(newdat$L, rev(newdat$L)),
  y = c(newdat$ymax, rev(newdat$ymin)),
  col = adjustcolor(2, alpha.f = 0.3),
  border = adjustcolor(2, alpha.f = 0.3)
)
lines(fit ~ L, newdat, col=2)

lrPerc <- function(alpha, beta, p) (log(p/(1-p))-alpha)/beta
( L50 <- lrPerc(alpha=coef(fit)[1], beta=coef(fit)[2], p=0.5) )
lines(x=c(L50,L50,0), y=c(-100,0.5,0.5), lty=2, col=2)
text(x=L50, y=0.5, labels = paste0("L50 = ", round(L50,2)), pos=4, col=2 )

marchtaylor/fishdynr documentation built on May 21, 2019, 11:27 a.m.