fqr_prediction: Prediction intervals for functional quantile regression

Description Usage Arguments Value Author(s)

View source: R/fqr_prediction.R

Description

Return point predictions and prediction intervals for functional scalar-on-image quantile regression and outputs from FPCA.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
fqr_prediction(
  data_projected_name,
  train_sub,
  test_sub,
  data_demo,
  pve_threshold,
  pred_table,
  qr_pen = "LASSO",
  qr_postLASSO = FALSE,
  lambda = NULL,
  tau_levels,
  return_func_coef = FALSE
)

Arguments

data_projected_name

text file with the smoothing projections for each statistical unit

train_sub

rownames of data_projected_name used to fit the FPCA

test_sub

rownames of data_projected_name for which to get the FPCA scores

data_demo

demographic data with the scalar outcome of interest

pred_table

table with predictions for each statistical unit

qr_pen

penalty type for quantile regression

qr_postLASSO

refit quantile regression with LASSO selected variables?

lambda

lambda parameter for penalised quantile regression

tau_levels

quantiles for which quantile regression is fitted

return_func_coef

return the functional coefficient?

Value

A list with the following elements

pred_table

table with predictions for each statistical unit

no_fpc

number of functional principal components selected

evec

Eigenimages

model_med_coef

Regression coefficient from median regression

model_lower_coef

Regression coefficient from regression with lower quantile

model_upper_coef

Regression coefficient from regression with lower quantile

lambda_min

Value of lambda for which model_med_coef is extracted

Author(s)

Marco Palma, M.Palma@warwick.ac.uk


marcopalma3/neurofundata documentation built on Dec. 12, 2019, 5:29 a.m.