Description Usage Arguments Details Value
View source: R/AUC_time_weights_estimation.R
In matrix formulation, the area under a curve of interest, named Y, can be expressed as matrix product of a vector of weights W and the vector of the values of Y. This function calculates the weights W when AUC is calculated either by the trapezoid, the Lagrange or the Spline interpolation methods.
1 | AUC_time_weights_estimation(time, method)
|
time |
a numerical vector of time points of length m (x-axis coordinates for AUC calculation). |
method |
a character scalar indicating the interpolation method of interest. Options are 'trapezoid', 'lagrange' and 'spline'. In this version the 'spline' interpolation method is implemented with the "not-a-knot" spline boundary conditions. |
In matrix formulation, the AUC of the outcome \mjseqnY can be expressed as \mjseqn\textAUC = W \cdot Y, with \mjseqnW defined by the following expressions for the trapezoid, the Lagrange and the spline interpolation methods.
Trapezoid method: \mjsdeqnW_j = \fract_j+1 - t_j2 \text if j=1 \mjsdeqnW_j = \fract_j - t_j-12 \text if j=m \mjsdeqnW_j = \fract_j+1 - t_j-12 \text otherwise
Lagrange method: (see AUC_Lagrange_Cjp_coefficients
for the definition of the Cjp coefficients)
\mjsdeqnW_j = \fracC_[2][j-1]\prod_l=0 ;\ l\neq (j-1)^P=2 (t_j-t_j+1) + \sum_p=0^P=3 \fracC_[j-1+p][3-p]\prod_l=0 ;\ l\neq (3-p)^P=3 (t_j-t_j-3+p+l) \text if j=1,2,3
\mjsdeqnW_j = \fracC_[m][j-(m-2)]\prod_l=0 ;\ l\neq (j-(m-2))^P=2 (t_j-t_j-2+l) + \sum_p=0^m-j \fracC_[j-1+p][3-p]\prod_l=0 ;\ l\neq (3-p)^P=3 (t_j-t_j-3+p+l) \text if j=m-2,m-1,m
\mjsdeqnW_j = \sum_p=0^m-j \fracC_[j-1+p][3-p]\prod_l=0 ;\ l\neq (3-p)^P=3 (t_j-t_j-3+p+l) \text othermise
Spline method: (see AUC_Spline_matrix_A
and AUC_Spline_matrix_B
for the definition of Matrices A and B)
\mjsdeqnW_j = \sum_p=2^m -\frac(t_p-t_p-1)^324(u_pj+u_p-1j) + W_j^trap.
where \mjseqn(u_pj) is the element \mjseqnU(p,j) with \mjseqnU a matrix defined as \mjseqnU = A^-1B.
A numerical scalar with same length than the vector time
corresponding to the weights W.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.