mi4p-package | R Documentation |
A framework for multiple imputation for proteomics is proposed by Marie Chion, Christine Carapito and Frederic Bertrand (2021) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1371/journal.pcbi.1010420")}. It is dedicated to dealing with multiple imputation for proteomics.
Maintainer: Frederic Bertrand frederic.bertrand@utt.fr (ORCID)
Authors:
Marie Chion mariechion@protonmail.com (ORCID)
Christine Carapito ccarapito@unistra.fr (ORCID)
Other contributors:
Gordon Smyth [contributor]
Davis McCarthy [contributor]
Hélène Borges [contributor]
Thomas Burger [contributor]
Quentin Giai-Gianetto [contributor]
Samuel Wieczorek [contributor]
M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple
imputation-induced variability for differential analysis in mass
spectrometry-based label-free quantitative proteomics.
\Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1371/journal.pcbi.1010420")}
M. Chion, Ch. Carapito, F. Bertrand. Towards a more accurate differential
analysis of multiple imputed proteomics data with mi4limma. Statistical
Analysis of Proteomic Data: Methods and Tools, 2022.
\Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1007/978-1-0716-1967-4_7")}
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.