rubin2bt.all | R Documentation |
Computes the between-imputation component in the 2nd Rubin's rule for all peptides.
rubin2bt.all(
data,
funcmean = meanImp_emmeans,
metacond,
is.parallel = FALSE,
verbose = FALSE
)
data |
dataset |
funcmean |
function that should be used to compute the mean |
metacond |
a factor to specify the groups |
is.parallel |
should parallel computing be used? |
verbose |
should messages be displayed? |
List of variance-covariance matrices.
Frédéric Bertrand
M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1371/journal.pcbi.1010420")}.
library(mi4p)
data(datasim)
datasim_imp <- multi.impute(data = datasim[,-1], conditions =
attr(datasim,"metadata")$Condition, method = "MLE")
rubin2bt.all(datasim_imp[1:5,,],funcmean = meanImp_emmeans,
attr(datasim,"metadata")$Condition)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.