Computes a novel variable importance for random forests: Impurity reduction importance scores for out-of-bag (OOB) data complementing the existing inbag Gini importance, see also Strobl et al (2007) <doi:10.1186/1471-2105-8-25>, Strobl et al (2007) <doi:10.1016/j.csda.2006.12.030> and Breiman (2001) <DOI:10.1023/A:1010933404324>. The Gini impurities for inbag and OOB data are combined in three different ways, after which the information gain is computed at each split. This gain is aggregated for each split variable in a tree and averaged across trees.
Package details |
|
---|---|
Author | Markus Loecher <Markus.Loecher@gmail.com> |
Maintainer | Markus Loecher <Markus.Loecher@gmail.com> |
License | GPL (>= 2) |
Version | 1.0.1 |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.