markusloecher/rfVarImpOOB: Unbiased Variable Importance for Random Forests

Computes a novel variable importance for random forests: Impurity reduction importance scores for out-of-bag (OOB) data complementing the existing inbag Gini importance, see also Strobl et al (2007) <doi:10.1186/1471-2105-8-25>, Strobl et al (2007) <doi:10.1016/j.csda.2006.12.030> and Breiman (2001) <DOI:10.1023/A:1010933404324>. The Gini impurities for inbag and OOB data are combined in three different ways, after which the information gain is computed at each split. This gain is aggregated for each split variable in a tree and averaged across trees.

Getting started

Package details

AuthorMarkus Loecher <Markus.Loecher@gmail.com>
MaintainerMarkus Loecher <Markus.Loecher@gmail.com>
LicenseGPL (>= 2)
Version1.0.1
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("markusloecher/rfVarImpOOB")
markusloecher/rfVarImpOOB documentation built on July 5, 2020, 6:50 p.m.