gini_index: compute Gini impurity for binary values only

Description Usage Arguments Value Author(s) Examples

Description

simple function to compute simple or penalized Gini impurity

The "penalty" compares the class probabilities pHat with a reference estimate pEst

which would typically serve as a prediction (e.g. in a tree node).

Usage

1
2
3
4
gini_index(pHat, pEst = NULL, k = 2, kind = 1, w = 2, 


    correctBias = FALSE, nNode = NULL, verbose = 0)

Arguments

pHat

probabilities from the current data,

pEst

estimated class probabilities (typically from an earlier inbag estimation). Only pass if you intend to compute the "validation-penalized Gini"

k

exponent of penalty term: abs(pHat-pEst)^k

kind

kind of penalty

w

weights, default is 2 if you pass just a single probability instead of the vector (p,1-p),

correctBias

multiply by n/(n-1) for sample variance correction!

nNode

number of observations in node; only used for one special Gini impurity!

verbose

level of verbosity

Value

simple or penalized Gini impurity

Author(s)

Markus Loecher <Markus.Loecher@gmail.com>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#Test binary case:





gini_index(0.5,0.5,kind=1)


gini_index(0.9,0.1,kind=1)


gini_index(0.1,0.9,kind=1)





gini_index(0.5,0.5,kind=2)


gini_index(0.9,0.1,kind=2)


gini_index(0.1,0.9,kind=2)








gini_index(0.5,0.5,kind=3)


gini_index(0.9,0.1,kind=3)


gini_index(0.1,0.9,kind=3)

markusloecher/rfVarImpOOB documentation built on July 5, 2020, 6:50 p.m.