Description Usage Arguments Value Author(s) Examples
computes importance scores for an individual tree.
These can be based on Gini impurity or Accuracy or logloss
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | 
| inbag | inbag data | 
| outbag | |
| RF | object returned by call to randomForest() | 
| k | which tree | 
| ylabel | name of dependent variable | 
| returnTree | if TRUE returns the tree data frame otherwise the aggregated Gini importance grouped by split variables | 
| zeroLeaf | if TRUE discard the information gain due to splits resulting in n=1 | 
| score | scoring method:PMDI=mean decrease penalized Gini impurity (note:the last digit is the exponent of the penalty!), MDI=mean decrease impurity (Gini), MDA=mean decrease accuracy (permutation), MIA=mean increase accuracy | 
| Predictor | function to estimate node prediction, such as Mode or mean or median. Alternatively, pass an array of numbers as replacement for the yHat column of tree | 
| correctBias | multiply by n/(n-1) for sample variance correction! | 
| ImpTypes | which scores should be computed | 
| verbose | level of verbosity | 
if returnTree==TRUE returns the tree data frame otherwise the aggregated Gini importance grouped by split variables
Markus Loecher <Markus.Loecher@gmail.com>
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | rfTit = rfTitanic(nRows = 500,nodesize=10)
rfTit$data$Survived = as.numeric(rfTit$data$Survived)-1
k=1
inbag = rep(rownames(rfTit$RF$inbag),time=rfTit$RF$inbag[,k])
#trainBag=titanic_train[inbag,]
trainBag=rfTit$data[inbag,];rownames(trainBag)  = 1:nrow(trainBag)
outbag = names((rfTit$RF$inbag[rfTit$RF$inbag[,k]==0,k]))
OOB = rfTit$data[outbag,];rownames(OOB)  = 1:nrow(OOB)
Imp =GiniImportanceTree(trainBag,OOB, RF,k,ylabel="Survived")
                          
Tree = GiniImportanceTree(trainBag,OOB, RF,k,ylabel="Survived",returnTree=TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.