lcmodels: Risk Predictions from Lung Cancer Models

Description Usage Arguments Value Warning Author(s) References Examples

View source: R/lcmodels.R

Description

The R package provides individual risks of lung cancer and lung cancer death based on various published papers: Bach et al., 2003; Spitz et al., 2007; Cassidy et al., 2008 (LLP); Hoggart et al., 2012; Tammemagi et al., 2013 (PLCOm2012); Marcus et al., 2015 (LLPi); Wilson and Weissfeld, 2015 (Pittsburgh); Katki et al., 2016 (LCRAT and LCDRAT).

Usage

1

Arguments

x

A data frame or matrix containing individuals' covariate values. Covariates should be in the following columns and numerical formats:

  • column 1 - current age (numeric);

  • column 2 - gender (1=Female, 0=Male);

  • column 3 - years smoked (numeric);

  • column 4 - years quit (numeric with 0 to indicate current smoker);

  • column 5 - cigarettes per day (numeric);

  • column 6 - race (0=Non-hispanic white, 1=Non-hispanic Black/African American, 2=Hispanic, 3=Other Ethnicity);

  • column 7 - lung disease (1=COPD or Emphysema, 0=No COPD or Emphysema);

  • column 8 - number of first degree relatives with lung cancer (0,1,2);

  • column 9 - bmi;

  • column 10 - highest education level (1=<12 grade, 2=HS graduate, 3=post hs, no college, 4=associate degree/some college, 5=bachelors degree, 6=graduate school);

  • column 11 - asbestos exposure binary indicator;

  • column 12 - prior history of pneumonia indicator;

  • column 13 - prior history of cancer indicator;

  • column 14 - family history of lung cancer (0=none, 1=early onset, 2=late onset);

  • column 15 - Dust exposure (binary indicator);

  • column 16 - 2 or more first degree relatives with cancer (binary indicator);

  • column 17 - 1 or more first degree relatives with smoking cancer (binary indicator);

  • column 18 - no hay fever (binary indicator);

  • column 19 - asian ethnicity (binary indicator);

  • column 20 - islander ethnicity (binary indicator);

  • column 21 - American indian ethnicity (binary indicator);

Risk factors used by each model

Covariate Bach Spitz LLP Hoggart PLCOm2012 Pittsburgh LLPi LCRAT LCDRAT
Age Yes Yes Yes Yes Yes Yes Yes Yes Yes
Gender Yes Yes Yes No No No Yes Yes Yes
Race/ethnicity No No No No Yes No No Yes Yes
Asian No No No No Yes No No No No
Pacific islander No No No No Yes No No No No
America Indian No No No No Yes No No No No
Education No No No No Yes No No Yes Yes
BMI No No No No Yes No No Yes Yes
Smoking status No Yes No Yes Yes Yes No No No
Years/Age quit Yes Yes No Yes Yes No No Yes Yes
Years smoked Yes No Yes Yes Yes Yes Yes Yes Yes
Cigs per day Yes No No Yes Yes Yes No Yes Yes
Pack-years No Yes No No No No No Yes Yes
Prior cancer No No Yes No Yes No Yes No No
Lung disease No Yes No No Yes No Yes Yes Yes
Pneumonia No No Yes No No No No No No
Hayfever No Yes No No No No No No No
Asbestos exposure Yes Yes Yes No No No No No No
Dust exposure No Yes No No No No No No No
Any FDR w/ cancer No Yes No No No No No No No
Any FDR w/ smoking-related cancer No Yes No No No No No No No
Any FDR w/ LC No No Yes No Yes No Yes Yes Yes
Num. FDR w/ LC No No No No No No No Yes Yes
Early onset FDR w/ LC No No Yes No No No Yes No No

Value

A numeric matrix containing individuals' predictions:

Warning

VGAM is a required dependency of this package. VGAM may automatically be installed the first time this package is used. Inputs must be in numerical format to ensure correct output. For data frame x, this can be checked using sapply(x,class)

Author(s)

Li C. Cheung, li.cheung@nih.gov, Stephanie A. Kovalchik, Hormuzd A. Katki

References

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
age <- c(66,58,75,72,56)
bmi <- c(23,28,26,27,24)
cpd <- c(36,36,40,24,40)
emp <- c(0,1,1,0,1)
fam.lung.trend <- c(0,2,0,2,0)
female <- c(0,1,0,1,0)
smkyears <- c(43,37,45,42,29)
qtyears <- c(0,0,9,6,6)
race <- c(0,1,2,2,3)
edu6 <- c(3,5,4,5,5)
asb <- c(0,0,0,0,0)
pneu <- c(0,0,0,0,0)
prior.cancer <- c(0,0,0,0,0)
fam.cancer.onset <- c(0,1,0,2,0)
dust <- c(0,0,0,0,0)
fam.cancer <- c(0,1,0,1,0)
fam.smoke.cancer <- c(0,1,0,1,0)
no.hayfever <- c(1,1,1,1,1)
asian <- c(0,0,0,0,1)
islander <- c(0,0,0,0,0)
indian <- c(0,0,0,0,0)

persons <- data.frame(age,
                      female,
                      smkyears,
                      qtyears,
                      cpd,
                      race,
                      emp,
                      fam.lung.trend,
                      bmi,
                      edu6,
                      asb,
                      pneu,
                      prior.cancer,
                      fam.cancer.onset,
                      dust,
                      fam.cancer,
                      fam.smoke.cancer,
                      no.hayfever,
                      asian,
                      islander,
                      indian)

persons_predictions <- lcmodels(persons)
persons_predictions

marskar/lcmodels documentation built on May 3, 2019, 3:35 p.m.