In actual moment, more than fifty functions are available in finiteMix. Let's use some of them.
First of all, you need the devtools package to install any package from GitHub, install or load it with:
if(!"devtools" %in% installed.packages())
install.packages(devtools)
require(devtools)
Now, we just need to install finiteMix :)
install_github("matheuscastro43/finiteMix")
Loading finiteMix package..
require(finiteMix)
Loading required package: finiteMix
You has loaded finiteMix library
By Matheus Oliveira de Castro <mtcastro43@gmail.com>
and Gualberto Agamez Montalvo
Remenber, you can use this package in your text, but do not forget to citate us
citation("finiteMix")
To cite package ‘finiteMix’ in publications use:
CASTRO M. O.; MONTALVO G. S. A. (2021). finiteMix: Finite Mixture
Models. R package version 0.5.0.
A BibTeX entry for LaTeX users is
@Manual{,
title = {finiteMix: Finite Mixture Models},
author = {CASTRO M. O.; MONTALVO G. S. A.},
year = {2021},
note = {R package version 0.5.0},
}
ATTENTION: This citation information has been auto-generated from the
package DESCRIPTION file and may need manual editing, see
‘help("citation")’.
dglindley_mix(x = 10, pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4), log = FALSE)
0.0375330345533306
density = function(x) dglindley_mix(x, pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4), log = FALSE)
curve(density, 0, 90, lwd = 3, col = "navy")
pglindley_mix(q = c(10, 25, 50, 80), pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4), lower.tail = TRUE,
log = FALSE)
distribution = function(q) pglindley_mix(q, pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4),
lower.tail = TRUE, log = FALSE)
curve(distribution, 0, 90, lwd = 3, col = "navy")
qglindley_mix(p = c(.25, .50, .75, .95), pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4),
lower.tail = TRUE, log = FALSE)
quantilic = function(p) qglindley_mix(p, pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4),
lower.tail = TRUE, log = FALSE)
curve(quantilic, 0, 1, lwd = 3, col = "navy")
generating = rglindley_mix(n = 1000, pi = c(0.3, 0.7), alpha = c(10, 17), beta = c(1, 3), gamma = c(2, 4))
g.search(generating)
$sum
g = 1 g = 2 g = 3
476362.69 108193.85 41777.04
$percentageSum
g = 1 g = 2 g = 3
100% 22.71% 8.77%
$plot
g.search(generating, lim.em = 5, family = "Generalized Lindley")
[==================================================] 100%
$sum
g = 1 g = 2 g = 3
476362.69 108193.85 41777.04
$percentageSum
g = 1 g = 2 g = 3
100% 22.71% 8.77%
$AIC
g = 1 g = 2 g = 3
9082.564 8264.287 8268.532
$BIC
g = 1 g = 2 g = 3
9097.287 8279.010 8283.256
$plot
estimating = eglindley_mix(generating, g = 2, lim.em = 100)
Limit of EM Iterations (100):
[==== ] 8%
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.