| Inferences Generalized Lindley Distribution | R Documentation | 
Estimates parameters of a univariate Generalized Lindley Distribution with k-means clustering and EM-algorithm.
eglindley(data, plot.it = TRUE, empirical = FALSE,
                     col.estimated = "orange", col.empirical = "navy", ...)
| data | vector containing the sample, or list obtained with rglindley. | 
| plot.it | logical, TRUE to plot the histogram with estimated distribution curve. | 
| empirical | logical, TRUE to add the empirical curve ("Kernel Density Estimation") in the plot. | 
| col.estimated | a colour to be used in the curve of estimated density. | 
| col.empirical | a colour to be used in the curve of empirical density. | 
| ... | further arguments and graphical parameters passed to hist. | 
CASTRO, M. O.; MONTALVO, G. S. A.
## Generate a sample.
data = rglindley(n = 1000, alpha = 18, beta = 2, gamma = 4)
## And now, estimate the parameters, using the 'data' list.
eglindley(data)
## Or using the sample vector.
eglindley(data$sample)
## Not plotting the graphic.
eglindley(data, plot.it = FALSE)
## Adding the empirical curve to the graphic.
eglindley(data, empirical = TRUE)
## Changing the color of the curves.
eglindley(data, empirical = TRUE, col.estimated = "pink", 
          col.empirical = "red3")
## Using "..."
eglindley(data, empirical = TRUE, col.estimated = "pink", 
          col.empirical = "red3", breaks = 300)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.