eglindley = function(data, plot.it = TRUE, empirical = FALSE,
col.estimated = "orange", col.empirical = "navy", ...){
if((is.numeric(data) || is.numeric(data$sample)) && is.logical(plot.it) &&
is.logical(empirical)){
if(is.list(data)){data = data$sample}
data <- sort(data)
n <- length(data)
invisible(utils::capture.output(b <- bmixture::bmixgamma(data, k = 2)))
alphas = mean(apply(b$alpha_sample, 2, mean)) - .5
betas = mean(apply(b$beta_sample, 2, mean))
gammas = (b$pi_sample[1]^(-1) -1)/betas
LV = function(Psi, x){
alpha = Psi[1]
beta = Psi[2]
gamma = Psi[3]
lv = (alpha - 1) * sum(log(x)) + sum(log(alpha + gamma*x)) - sum(x)/beta -
n * (alpha * log(beta) + log(beta*gamma + 1) + log(gamma(alpha + 1)))
if(lv == -Inf) return(.Machine$double.xmax/1e+08)
if(lv == Inf) return(-.Machine$double.xmax/1e+08)
return(-lv)
}
grr = function(Psi, x){
alpha = Psi[1]
beta = Psi[2]
gamma = Psi[3]
-c(sum(log(x)) + sum(1/(alpha + gamma * x)) - n * log(beta) - n *
digamma(alpha + 1),
sum(x)/beta^2 - n*alpha/beta - n * gamma/(beta * gamma + 1),
sum(x/(alpha + gamma * x)) - n * beta/(beta*gamma + 1))
}
b = optim(par = c(alphas, betas, gammas), fn = LV, lower = c(1e-04, 1e-04, 1e-04),
upper = c(Inf, Inf, Inf), method = "L-BFGS-B", x = data, gr = grr)
alpha = b$par[1]
beta = b$par[2]
gamma = b$par[3]
LF = -b$value
aic = 6 - 2*LF
bic = 3*log(n) - 2*LF
if(alpha >= 1){
modal = max(dglindley(c((alpha-1)*beta, (alpha)*beta), alpha, beta,
gamma))
}else{
U = modal = 30
while(modal >= 0.9 * U){
modal = optimize(function(x) dglindley(x, alpha, beta, gamma),
interval = c(0, U), maximum = T)$maximum
U = 2 * U
}
modal = dglindley(modal, alpha, beta, gamma)
if(modal > 10* dglindley(1, alpha, beta, gamma)){
modal = dglindley(1, alpha, beta, gamma)
}
}
if(plot.it == TRUE){
d.breaks = ceiling(nclass.Sturges(data)*2.5)
modal = min(c(1, max(modal, hist(data, plot = FALSE,
if(any(names(list(...)) == "breaks") ==
FALSE){
breaks = d.breaks}, ...)$density)))
hist(data,freq = F,border = "gray48",
main = "Sampling distribution of X", xlab = "x",
ylab = "Density",
ylim = c(0, modal),
if(any(names(list(...)) == "breaks") == FALSE){breaks = d.breaks}, ...)
estimada = function(x){dglindley(x, alpha, beta, gamma)}
curve(estimada, col = col.estimated, lwd = 3, add = T)
if(empirical){
lines(density(data),col = col.empirical, lwd = 3)
legend("topright", legend=(c("Empirical", "Estimated")),
fill=c(col.empirical, col.estimated), border = c(col.empirical,
col.estimated),
bty="n")
}
else{
legend("topright", legend = "Estimated", fill = col.estimated,
border = col.estimated,
bty="n")
}
p <- recordPlot()
}
ordem = order(alpha)
if(plot.it){
output = list(alpha[ordem], beta[ordem], gamma[ordem], LF, aic, bic, p)
names(output) = c("alpha_hat", "beta_hat", "gamma_hat", "logLik", "AIC", "BIC", "plot")}
else{
output = list(alpha[ordem], beta[ordem], gamma[ordem], LF, aic, bic)
names(output) = c("alpha_hat", "beta_hat", "gamma_hat", "logLik", "AIC", "BIC")
}
return(output)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.