autoMbo | R Documentation |
This function tunes the DMBO hyperparameters and then plots the best DMBO configuration against the default SMBO configuration. This function is simulating the material science workflow. It is recommended to use a problem which needs hundreds of black-box function evaluations to be solved, as it is not efficient for a too minor amount. The user has to define the maximum amount of allowed black-box function evaluations and when to switch the hyperparameters.
autoMbo( data, target, minimize = FALSE, funcEvals, minFuncEvals = 10, itersMboTune = 10, repls = 10, showInfo = TRUE, ncpus = NA, seed = 1 )
data |
[ |
target |
[ |
minimize |
[ |
funcEvals |
[ |
minFuncEvals |
[ |
itersMboTune |
[ |
repls |
[ |
showInfo |
[ |
ncpus |
[ |
seed |
[ |
A ggplot2 object illustrating the benchmark of the tuned DMBO approach vs. the default SMBO.
## Not run: set.seed(1) data <- data.frame(a=runif(50,10,5555),b=runif(50,-30000,-500)) data$ratio <- rowSums(data) data$ratio <- data$ratio/max(data$ratio) colnames(data) <- c("a","t","y") target = c("y") minimize = FALSE funcEvals = 13 minFuncEvals = 5 itersMboTune = 1 repls = 2 plot = EBO::autoMbo(data, target, minimize, funcEvals, minFuncEvals, itersMboTune, repls) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.