View source: R/plotBenchmark.R
plotBenchmark | R Documentation |
This functions benchmarks the optimization algorithms: iRace, spotES, spotDE, spotGE, random, cmaesr and mlrMBO and then plots them as boxplots.
plotBenchmark( task, funcEvals = 65, paramsMBO = data.table::data.table(NULL), paramsCMAESR = data.table::data.table(NULL), paramsES = data.table::data.table(NULL), paramsDE = data.table::data.table(NULL), paramsGE = data.table::data.table(NULL), repls = 25, showInfo = TRUE, ncpus = NA, seed = 5 )
task |
[ |
funcEvals |
[ |
paramsMBO |
[ |
paramsCMAESR |
[ |
paramsES |
[ |
paramsDE |
[ |
paramsGE |
[ |
repls |
[ |
showInfo |
[ |
ncpus |
[ |
seed |
[ |
A plot containing one boxplot for each algorithm.
## Not run: set.seed(1) data <- data.frame(a = runif(50,10,5555), b = runif(50,-30000,-500), c = runif(50,0,1000), d = sample(c("nitrogen","air","argon"), 50, replace = TRUE), e = sample(c("cat1","cat2","cat3"), 50, replace = TRUE)) data$ratio <- rowSums(data[,1:3]^2) data$ratio <- data$ratio/max(data$ratio) colnames(data) <- c("power", "time", "pressure", "gas", "cat","testTarget") instance = mlr::train(mlr::makeLearner("regr.randomForest"), mlr::makeRegrTask(data = data, target = "testTarget")) psOpt = ParamHelpers::makeParamSet( ParamHelpers::makeIntegerParam("power", lower = 10, upper = 5555), ParamHelpers::makeIntegerParam("time", lower = -30000, upper = -500), ParamHelpers::makeNumericParam("pressure", lower = 0, upper = 1000), ParamHelpers::makeDiscreteParam("gas", values = c("nitrogen", "air", "argon")), ParamHelpers::makeDiscreteParam("cat", values = c("cat1","cat2","cat3")) ) funcEvals = 60 task = task( simulation = "regr.randomForest", data = data, target = "testTarget", psOpt = psOpt, minimize = FALSE ) plotBenchmark2 = plotBenchmark(task, funcEvals, repls = 2, seed = 1) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.