View source: R/plotBenchmark.R
| plotBenchmark | R Documentation |
This functions benchmarks the optimization algorithms: iRace, spotES, spotDE, spotGE, random, cmaesr and mlrMBO and then plots them as boxplots.
plotBenchmark( task, funcEvals = 65, paramsMBO = data.table::data.table(NULL), paramsCMAESR = data.table::data.table(NULL), paramsES = data.table::data.table(NULL), paramsDE = data.table::data.table(NULL), paramsGE = data.table::data.table(NULL), repls = 25, showInfo = TRUE, ncpus = NA, seed = 5 )
task |
[ |
funcEvals |
[ |
paramsMBO |
[ |
paramsCMAESR |
[ |
paramsES |
[ |
paramsDE |
[ |
paramsGE |
[ |
repls |
[ |
showInfo |
[ |
ncpus |
[ |
seed |
[ |
A plot containing one boxplot for each algorithm.
## Not run:
set.seed(1)
data <- data.frame(a = runif(50,10,5555), b = runif(50,-30000,-500),
c = runif(50,0,1000),
d = sample(c("nitrogen","air","argon"), 50, replace = TRUE),
e = sample(c("cat1","cat2","cat3"), 50, replace = TRUE))
data$ratio <- rowSums(data[,1:3]^2)
data$ratio <- data$ratio/max(data$ratio)
colnames(data) <- c("power", "time", "pressure", "gas", "cat","testTarget")
instance = mlr::train(mlr::makeLearner("regr.randomForest"), mlr::makeRegrTask(data = data, target = "testTarget"))
psOpt = ParamHelpers::makeParamSet(
ParamHelpers::makeIntegerParam("power", lower = 10, upper = 5555),
ParamHelpers::makeIntegerParam("time", lower = -30000, upper = -500),
ParamHelpers::makeNumericParam("pressure", lower = 0, upper = 1000),
ParamHelpers::makeDiscreteParam("gas", values = c("nitrogen", "air", "argon")),
ParamHelpers::makeDiscreteParam("cat", values = c("cat1","cat2","cat3"))
)
funcEvals = 60
task = task(
simulation = "regr.randomForest",
data = data,
target = "testTarget",
psOpt = psOpt,
minimize = FALSE
)
plotBenchmark2 = plotBenchmark(task, funcEvals, repls = 2, seed = 1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.