roboost_plsr: RoBoost-PLSR : Robust method for partial least squares...

Description Usage Arguments Examples

Description

RoBoost-PLSR : Robust method for partial least squares regression

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
roboost_plsr(
  X,
  Y,
  ncomp,
  niter = 50,
  gamma = gamma,
  beta = beta,
  alpha = alpha,
  th = 1 - 10^-12
)

Arguments

X

Explanatory variables

Y

Explained Variables

ncomp

Number of latent variables

niter

Number of maximal iterations

gamma

parameters for leverage point

beta

parameters for Y-residuals

alpha

parameters for X-residuals

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
n <- 10
p <- 6
set.seed(1)
X <- matrix(rnorm(n * p, mean = 10), ncol = p)
y1 <- 100 * rnorm(n)
y2 <- 100 * rnorm(n)
Y <- cbind(y1, y2)
set.seed(NULL)
Xr <- X[1:8, ] ; Yr <- Y[1:8, ]
Xu <- X[9:10, ] ; Yu <- Y[9:10, ]
library(roboost)
ncomp = 3
alpha = Inf
beta  = Inf
gamma = Inf
mod = roboost_plsr(X = Xr,Y = Yr ,ncomp,gamma =gamma,beta=beta,alpha=alpha)
pred = predict_roboost_plsr(mod$fm,Xu)

maxmetz/RoBoost-PLSR documentation built on Dec. 21, 2021, 3:52 p.m.