Description Usage Arguments Examples
RoBoost-PLSR : Robust method for partial least squares regression
1 2 3 4 5 6 7 8 9 10 |
X |
Explanatory variables |
Y |
Explained Variables |
ncomp |
Number of latent variables |
niter |
Number of maximal iterations |
gamma |
parameters for leverage point |
beta |
parameters for Y-residuals |
alpha |
parameters for X-residuals |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | n <- 10
p <- 6
set.seed(1)
X <- matrix(rnorm(n * p, mean = 10), ncol = p)
y1 <- 100 * rnorm(n)
y2 <- 100 * rnorm(n)
Y <- cbind(y1, y2)
set.seed(NULL)
Xr <- X[1:8, ] ; Yr <- Y[1:8, ]
Xu <- X[9:10, ] ; Yu <- Y[9:10, ]
library(roboost)
ncomp = 3
alpha = Inf
beta = Inf
gamma = Inf
mod = roboost_plsr(X = Xr,Y = Yr ,ncomp,gamma =gamma,beta=beta,alpha=alpha)
pred = predict_roboost_plsr(mod$fm,Xu)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.