Description Usage Arguments Author(s) Examples
Stepwise model selection using AIC/QIC for lm, glm/geeglm objects.
1 2 3 4 5 6 7 8 9 10 11 12 |
object |
A lm, glm, or geeglm object. If the object is defined, the scope argument should be a formula. |
scope |
Defines the range of models explored in the stepwise search. See details for how to calibrate the scope. |
direction |
The direction (mode) of the stepwise model. Only "forward"" direction is supported. |
VIFThreshold |
maximum VIF threshold. Default value is 5. |
parallel |
If TRUE, run the function in parallel mode. |
cl.type |
Cluster type ("FORK" or "PSOCK") in parallel mode. Default value is "PSOCK." See parallel package's documentation for more information. |
n.cores |
Number of cores in parallel mode. Default value is the total number of cores (including logical cores) minus 1. |
verbose |
If true, prints the steps of the model selection. Default value is FLASE. |
AUC |
If true, computes the model's AUC along with AIC/QIC (binary reponse only). |
... |
See lm/glm/gee packages' documentations for additional parameters. |
Masoud Barah, Sanjay Mehrotra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | data("donor.kidney")
#select distinct donors
donor.kidney.distinct<-donor.kidney[!duplicated(donor.kidney[c("id")]),]
fitLM<-lm(log(creatinine) ~ 1,data=donor.kidney.distinct)
summary(fitLM)
frm<-as.formula(log(creatinine) ~ log(KDRI) + glomerulosclerosis +race+
anti_HCV + on_pump + DCD + laterality +
init_pump_resistance + terminal_pump_resistance +
init_pump_flow+ diabetes + smoking +
blood_type + HBsAg + MI + clinical_infection +
anti_HBs + Tattoos + cancer +
CMV + anti_HBc + HTLV)
fitLM<-stepVIF(object=fitLM,scope=frm)
fitGLM<-with(donor.kidney.distinct, glm(discard ~ 1, family = binomial(link="logit")))
frm<-as.formula(discard ~ log(KDRI) + log(creatinine)+ glomerulosclerosis +race+
anti_HCV + on_pump + DCD + laterality +
init_pump_resistance + terminal_pump_resistance +
init_pump_flow+ diabetes + smoking +
blood_type + HBsAg + MI + clinical_infection +
anti_HBs + Tattoos + cancer +
CMV + anti_HBc + HTLV)
fitGLM<-stepVIF(object=fitGLM,scope=frm, AUC= FALSE)
summary(fitGLM)
library(geepack)
fit.gee<-geepack::geeglm(discard ~ 1, family = binomial(link="logit"), data=donor.kidney,
corstr="independence", id=id)
fitGEE<-stepVIF(object=fit.gee,scope=frm, AUC = TRUE, verbose = FALSE)
summary(fitGEE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.