cluster_sessions | R Documentation |
mclust
packageCluster sessions with mclust
package
cluster_sessions(
sessions,
k,
seed,
mclust_tol = 1e-08,
mclust_itmax = 10000,
log = FALSE,
start = getOption("evprof.start.hour")
)
sessions |
tibble, sessions data set in evprof standard format |
k |
number of clusters |
seed |
random seed |
mclust_tol |
tolerance parameter for clustering |
mclust_itmax |
maximum number of iterations |
log |
logical, whether to transform |
start |
integer, start hour in the x axis of the plot. |
list with two attributes: sessions and models
library(dplyr)
# Select working day sessions (`Timecycle == 1`) that
# disconnect the same day (`Disconnection == 1`)
sessions_day <- california_ev_sessions %>%
divide_by_timecycle(
months_cycles = list(1:12), # Not differentiation between months
wdays_cycles = list(1:5, 6:7) # Differentiation between workdays/weekends
) %>%
divide_by_disconnection(
division_hour = 10, start = 3
) %>%
filter(
Disconnection == 1, Timecycle == 1
) %>%
sample_frac(0.05)
plot_points(sessions_day, start = 3)
# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)
# The column `Cluster` has been added
names(sessions_clusters$sessions)
plot_points(sessions_clusters$sessions) +
ggplot2::aes(color = Cluster)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.