plot_model_clusters | R Documentation |
Plot all bi-variable GMM (clusters) with the colors corresponding to the assigned user profile. This shows which clusters correspond to which user profile, and the proportion of every user profile.
plot_model_clusters(
subsets_clustering = list(),
clusters_definition = list(),
profiles_ratios,
log = TRUE
)
subsets_clustering |
list with clustering results of each subset
(direct output from function |
clusters_definition |
list of tibbles with clusters definitions
(direct output from function |
profiles_ratios |
tibble with columns |
log |
logical, whether to transform |
ggplot2
library(dplyr)
# Select working day sessions (`Timecycle == 1`) that
# disconnect the same day (`Disconnection == 1`)
sessions_day <- evprof::california_ev_sessions_profiles %>%
filter(Timecycle == "Workday") %>%
sample_frac(0.05)
plot_points(sessions_day, start = 3)
# Identify two clusters
sessions_clusters <- cluster_sessions(
sessions_day, k=2, seed = 1234, log = TRUE
)
# Plot the clusters found
plot_bivarGMM(
sessions = sessions_clusters$sessions,
models = sessions_clusters$models,
log = TRUE, start = 3
)
# Define the clusters with user profile interpretations
clusters_definitions <- define_clusters(
models = sessions_clusters$models,
interpretations = c(
"Connections during all day (high variability)",
"Connections during working hours"#'
),
profile_names = c("Visitors", "Workers"),
log = TRUE
)
# Create a table with the connection GMM parameters
connection_models <- get_connection_models(
subsets_clustering = list(sessions_clusters),
clusters_definition = list(clusters_definitions)
)
# Plot all bi-variable GMM (clusters) with the colors corresponding
# to their assigned user profile
plot_model_clusters(
subsets_clustering = list(sessions_clusters),
clusters_definition = list(clusters_definitions),
profiles_ratios = connection_models[c("profile", "ratio")]
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.