### ### ###
## TBATS model (Trigonometric Box-Cox ARMA Trend and Seasonal components) ----
## Reference:
## DeLivera, A, R. Hyndman, and R. Snyder. 2011. Forecasting time series with
## complex seasonal patterns using exponential smoothing. Journal of the
## American Statistical Association 106: 1513-1527.
library(forecast)
datP1 <- subset(dat, Date < "2008-01-01") # subset 1995-2007 data
datP2 <- subset(dat, Date > "2007-3-31" &
Date < "2013-01-01") # subset 2008-2012 data
datP3 <- subset(dat, Date > "2012-01-31") # subset 2013-2015 data
## Daily flows, 1995-2007
# Create multi-seasonal time series object:
datP1MSTS <- msts(datP1[, 3], seasonal.periods = c(365.25),
ts.frequency = 365.25, start = 1995)
# Fit the TBATS model:
fitP1 <- tbats(datP1MSTS)
# Plot the model forecast:
plot(forecast(fitP1, h = 365.25)) # h is how long to forecast in time
# View the forecast data frame (values and 95% CIs)
head(summary(forecast(fitP1, h = 1826.25)))
# Plot the decomposition of the seasons from the model:
plot(fitP1)
# Plot the residuals:
plot(residuals(fitP1))
# Plot the fitted values:
plot(fitted.values(fitP1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.