Description Details How to cite this package License Author(s) References
The rmgarch provides a selection of multivariate GARCH models with methods for
fitting, filtering, forecasting and simulation with additional support functions
for working with the returned objects. At present, the Generalized Orthogonal
GARCH using Independent Components Analysis (ICA) and Dynamic Conditional
Correlation (with multivariate Normal, Laplace and Student distributions) models
are fully implemented, with methods for spec, fit, filter, forecast, simulation,
and rolling estimation and forecasting, as well as specialized functions to
calculate and work with the weighted portfolio conditional density.
The Copula-GARCH model is also implemented with the multivariate Normal
and Student distributions, with dynamic (DCC) and static estimation of
the correlation.
The main package functionality, currently supports the GO-GARCH with ICA
method, and is available through the gogarchspec
,
gogarchfit
, gogarchfilter
, gogarchforecast
,
gogarchsim
and gogarchroll
functions. The DCC
with multivariate Normal, Laplace and Student distributions is also supported
with the main functionality in dccspec
, dccfit
,
dccfilter
, dccforecast
, dccsim
and
dccroll
. The Normal and Student Copula-GARCH, with dynamic or
static correlation, is implemented with the main functionality in
cgarchspec
, cgarchfit
, cgarchfilter
,
and cgarchsim
. Usual extractor and support methods for the
multivariate GARCH models are documented in the class of the returned objects.
.
Whenever using this package, please cite as
1 2 3 4 5 |
The releases of this package is licensed under GPL version 3.
Alexios Ghalanos
Bollerslev, T. 1990, Modelling the coherence in short-run nominal exchange
rates: a multivariate generalized ARCH model, The Review of Economics and
Statistics, 72(3), 498–505.
Broda, S.A. and Paolella, M.S. 2009, CHICAGO: A Fast and Accurate Method for
Portfolio Risk Calculation, Journal of Financial Econometrics 7(4),
412–436 .
Cappiello, L., Engle, R.F. and Sheppard, K. 2006, Asymmetric dynamics in the
correlations of global equity and bond returns, Journal of Financial
Econometrics 4, 537–572.
Croux, C. and Joossens, K. 2008, Robust estimation of the vector autoregressive
model by a least trimmed squares procedure, COMPSTAT, 489–501.
Chen, Y., Hardle, W., and Spokoiny, V. 2010, GHICA - Risk analysis with GH
distributions and independent components, Journal of Empirical Finance,
17(2), 255–269.
de Athayde, G.M. and Flores Jr, R.G. 2002, On Certain Geometric Aspects of
Portfolio Optimisation with Higher Moments, mimeo.
Engle, R.F. 2002, Dynamic conditional correlation, Journal of Business and
Economic Statistics 20, 339–350.
Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of
dynamic conditional correlation multivariate GARCH, NBER Working Paper.
Genest, C., Ghoudi, K. and Rivest, L. 1995, A semiparametric estimation
procedure of dependence parameters in multivariate families of distributions,
Biometrika, 82, 543–552.
Ghalanos, A., Rossi, E., and Urga, G. (2014). Independent Factor
Autoregressive Conditional Density Model, Econometric Reviews.
Paolella, M.S. 2007, Intermediate Probability - A Computational Approach,
Wiley-Interscience.
Schmidt, R., Hrycej, T. and Stutzle 2006, Multivariate distribution models with
generalized hyperbolic margins, Computational Statistics \& Data Analysis
50(8), 2065–2096.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.