### Medicare ####
names(MedicareSpending) <- c("drgDefinition", "idProvider",
"nameProvider", "addressProvider",
"cityProvider", "stateProvider",
"zipProvider", "referralRegion",
"totalDischarges", "aveCharges",
"avePayments", "drg")
MedicareProviders <- unique( MedicareSpending[,c(2,3,4,5,6,7,8)])
MedicareCharges <- MedicareSpending[,c(12,2,9,10,11)]
### CountryData (from CIA Data) ####
getAllCIAdata <- function() {
Meta <- CIAdata()
Codes <- Meta$Code
CountryData <- CIAdata(Codes[1]) %>% select(country) # just the country names
for (k in 1:nrow(Meta) ) {
thisVar <- CIAdata(Codes[k])
names(thisVar) <- c("country", Meta$Name[k])
CountryData <- merge(CountryData, thisVar, all = TRUE)
}
return(CountryData)
}
### Country Groups (e.g., G20, G8, GGG) ####
## GGG: Global Governance Group
# Source: http://www.mfa.gov.sg/content/mfa/overseasmission/newyork/nyemb_statements/global_governance_group/2012/201209/press_20122809.html
GGG <- data.frame(country = c("Bahamas, The", "Bahrain", "Barbados", "Botswana",
"Brunei", "Chile", "Costa Rica", "Finland", "Guatemala",
"Jamaica", "Kuwait", "Liechtenstein", "Luxembourg", "Malaysia",
"Monaco", "Montenegro", "New Zealand", "Panama", "Peru",
"Philippines", "Qatar", "Rwanda", "San Marino", "Senegal",
"Singapore", "Slovenia", "Switzerland", "United Arab Emirates",
"Uruguay","Vietnam"),
GGG = "yes" )
## G20
# Source: https://www.g20.org/about_g20/g20_members
G20 <- data.frame(country = c("Argentina", "Australia", "Brazil", "Canada",
"China", "France", "Germany", "India", "Indonesia", "Italy",
"Japan", "Korea, South", "Mexico", "Russia", "Saudi Arabia",
"South Africa", "Turkey", "United Kingdom", "United States",
"European Union"),
G20 = "yes")
## G8
# Source: http://en.wikipedia.org/wiki/G8
# one data frame with a variable for each Group.
G8 <- data.frame(country = c("Canada", "France", "Germany", "Italy", "Japan",
"Russia", "United Kingdom", "United States"),
G8 = "yes")
# a <- merge( select(CountryData,country),G8, all=TRUE)
a <- merge(G8, G20, all = TRUE )
a <- merge(a, GGG, all = TRUE)
a <- mutate(a,
G20 = ifelse(is.na(G20), FALSE, TRUE),
G8 = ifelse(is.na(G8), FALSE, TRUE),
GGG = ifelse(is.na(GGG), FALSE, TRUE))
CountryGroups <- a # Then save in CountryGroups.rda
### NCI 60 ####
newNames <- c("cellLine", "tissue", "age", "sex", "prior.treatment",
"epithelial" , "histology", "source" , "ploidy", "p53",
"mdr", "doublingtime")
names(nci60cellLine) <- newNames
# Put the names to have a lower case first level
lowerFirst <- function(S) {
substr(S, 0,1) <- tolower(substr(S,0,1))
return(S)
}
# for converting factors to character strings in an entire data frame
convert_factor_to_character <- function(data) {
kinds <- lapply(data, class)
for (k in 1:length(kinds)) {
if (kinds[k] == "factor") data[k] <- as.character(data[[k]])
}
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.