best_acca | R Documentation |
Determining the optimal number of cluster in the ACCA clustering using the average silhouette aproach.
best_acca(m, ...)
## S3 method for class 'cmatrix'
best_acca(m, mink, maxk, maxrep = 2L, maxiter = 100L, ...)
## S3 method for class 'matrix'
best_acca(m, mink, maxk, maxrep = 2L, maxiter = 100L, ...)
m |
\[ |
... |
Additional arguments (TODO). |
mink |
\[ |
maxk |
\[ |
maxrep |
\[ |
maxiter |
\[ |
\[list(3)
]
A list with: silhouette average with per k '$silhouette.ave';
the sequence of clusters tested '$k' and the optimal number of clusters '$best.k'.
Igor D.S. Siciliani
Leonard Kaufman; Peter J. Rousseeuw (1990). Finding groups in data : An introduction to cluster analysis. Hoboken, NJ: Wiley-Interscience. p. 87. doi:10.1002/9780470316801. ISBN 9780471878766.
Starczewski, Artur, and Adam Krzyżak. "Performance evaluation of the silhouette index. " International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2015.
sil_acca
## Not run:
x = corrp::corrp(iris)
m = corrp::corr_matrix(x)
best_acca(m,2,6)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.