sil_acca: Silhouette (clustering)

View source: R/sil_acca.R

sil_accaR Documentation

Silhouette (clustering)

Description

A C++ implementation of the Silhouette method of interpretation and validation of consistency within acca clusters of data.

Usage

sil_acca(acca, ...)

## S3 method for class 'acca_list'
sil_acca(acca, m, ...)

## S3 method for class 'list'
sil_acca(acca, m, ...)

Arguments

acca

\[acca_list(1)]
Acca clustering results from acca

...

Additional arguments (TODO).

m

\[matrix(1)]
correlation matrix from corr_matrix. By default the distance matrix(dist) used in this method is given by 'dist = 1 - m'.

Value

\[numeric(1)]
the average value of the silhouette width over all data of the entire dataset. Observations with a large average silhouette width (almost 1) are very well clustered.

Author(s)

Igor D.S. Siciliani

References

Leonard Kaufman; Peter J. Rousseeuw (1990). Finding groups in data : An introduction to cluster analysis. Hoboken, NJ: Wiley-Interscience. p. 87. doi:10.1002/9780470316801. ISBN 9780471878766.

Starczewski, Artur, and Adam Krzyżak. "Performance evaluation of the silhouette index. " International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2015.

Examples

## Not run: 

x = corrp::corrp(iris)
m = corrp::corr_matrix(x)
acca = corrp::acca(m,2)
sil_acca(acca,m)


## End(Not run)


meantrix/corrP documentation built on Oct. 22, 2024, 10:16 a.m.