Description Usage Arguments Examples
predict tiles using LA, RF, SGB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | predicLA_RF_XGBtiles(
df,
rasstack,
yname,
xgbname,
rfname,
laname,
ntree,
mtry,
nrounds = 3000,
eta = 0.007,
gamma = 5,
max_depth = 6,
xgb_alpha = 0,
xgb_lambda = 2,
subsample = 0.7,
...
)
|
df |
the dataframe for building the model |
rasstack |
rasterstack, predictors |
yname |
the y variable name |
xgbname |
output filename for xgb |
rfname |
output filename for rf |
ntree |
RF ntree, default 1000 |
lanme |
output filename for LA |
1 2 3 4 5 6 7 8 9 | xgbname = "/data/lu01/NWA/xgb6-Jul_oaq.tif"
rfname = "/data/lu01/NWA/RF6-Juloaq.tif"
laname= "/data/lu01/NWA/LA6-Juloaq.tif"
lus = raster("/data/lu01/NWA/predictor/NLstack.grd")
lf_lo = list.files("/data/lu01/NWA/Bakfietsdata", pattern = "^.*morning.*.csv$", full.names = T)
bakfile1 = read.csv(lf_lo[1])
proj = "+proj=longlat +datum=WGS84"
df = retrieve_predictor(lus, bakfile1, c("Lon", "Lat"), proj)
predicLA_RF_XGBtiles(df, lus, "NO2", xgbname=xgbname, rfname = rfname, laname = laname )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.