library(drake)
#r_outdated()
r_make()
drake::drake_cache("C:\\globalIRmap\\src/globalIRmap/.drake")$unlock()
drake::drake_cache("E:\\Mathis/src/globalIRmap/.drake")$unlock()
#################### Interactive manipulations of plan #########################
source("_drake.R")
drake::vis_drake_graph(plan, targets_only = T)
drake::sankey_drake_graph(plan, targets_only = T)
cached()
history_last <- drake_history(analyze = FALSE) %>%
setDT %>%
.[, built := as_datetime(built)] %>%
setorder(built) %>%
.[, .SD[.N,], by=target]
cache <- drake_cache()
rfbm_regr<- cache$get_value(history_last[target=='rfbm_regr',hash])
rfbm_classif<- cache$get_value(history_last[target=='rfbm_classif',hash])
bmcheck_classif <- cache$get_value(
history_last[target=='bm_checked_rfbm_classif.bm_classif_rfbm_classif.measure_classif', hash])
bmcheck_regr<- cache$get_value(
history_last[target=='bm_checked_rfbm_regr.bm_regr_rfbm_regr.meassure_regr', hash])
rfeval_featsel <- cache$get_value(history_last[target=='rfeval_featsel',hash])
rftuned <- cache$get_value(history_last[target=='rftuned',hash])
library(vctrs)
loadd(baselearners)
# same as readd(model)
s <- subtargets(baselearners)[1]
check <- vec_c(
readd(s[1], character_only = TRUE),
readd(s[2], character_only = TRUE),
readd(s[3], character_only = TRUE)
)
#drake::clean(destroy = F, garbage_collection = T)
# "recover=T
# drake’s data recovery feature is another way to avoid rerunning commands. It is useful if:
#
# You want to revert to your old code, maybe with git reset.
# You accidentally clean()ed a target and you want to get it back.
# You want to rename an expensive target."
# drake_config(plan,
# verbose = 2,
# targets = c("pathogen_maps_debugging", "prediction_pathogens"),
# lazy_load = "promise",
# console_log_file = "log/drake.log",
# caching = "worker",
# template = list(log_file = "log/worker%a.log", n_cpus = 16, memory = 60000,
# job_name = "paper1"),
# prework = list(quote(set.seed(1, "L'Ecuyer-CMRG")),
# quote(future::plan(future.callr::callr, workers = 10)),
# quote(parallelStart(
# mode = "multicore", cpus = ignore(16), level = "mlr.resample"
# ))
# ),
# garbage_collection = TRUE, jobs = 3, parallelism = "clustermq",
# lock_envir = FALSE, keep_going = TRUE
# )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.