knitr::opts_chunk$set( comment='.', message=FALSE, warning=FALSE, fig.path="img/pmplots_complete--", eval = !params$form_only, fig.width=4, fig.height=4 )
library(pmplots) library(dplyr) library(purrr)
\newpage
df <- pmplots_data_obs() %>% mutate(CWRES = CWRESI) id <- pmplots_data_id() dayx <- defx(breaks = seq(0,168,24)) .yname <- "MRG1557 (ng/mL)" etas <- c("ETA1//ETA-CL", "ETA2//ETA-V2", "ETA3//ETA-KA") covs <- c("WT//Weight (kg)", "ALB//Albumin (g/dL)", "SCR//Creatinine (mg/dL)")
Override the df
and id
objects in the above chunk
## Nothing here
\newpage
col//title
specificationThis is a way to specify the column name for source data along with the axis label
col_label("CL//Clearance (L)")
When only the column is given, then the column name will be used for the column title:
col_label("WT")
You can also pull col//title
data from a yspec
object. Load the yspec
package and generate an example data specification object
library(yspec) spec <- ys_help$spec()
Typically, you'll want to select a subset of columns and then call
axis_col_labs()
spec %>% ys_select(WT, AGE, BMI) %>% axis_col_labs()
\newpage
CWRES
if it doesn't existdat <- mutate(df, CWRES = NULL) cwresi_time(df) cwres_time(dat)
\newpage
dv_pred
)dv_pred(df, yname = .yname)
\newpage
dv_pred(df, loglog=TRUE, yname = .yname)
\newpage
dv_ipred
)dv_ipred(df, yname=.yname)
\newpage
dv_ipred(df, loglog=TRUE, yname = .yname)
\newpage
dv_preds(df) %>% pm_grid(ncol=2)
\newpage
res_time
)res_time(df)
\newpage
res_tafd
)res_tafd(df)
\newpage
res_tad
)res_tad(df)
\newpage
res_pred
)res_pred(df)
\newpage
res_cont
)res_cont(df, x="WT//Weight (kg)")
This function is also vectorized in x.
c("WT", "CRCL", "AST") %>% map(.f = partial(res_cont,df)) %>% pm_grid()
\newpage
res_cat
)dplyr::count(df, STUDYc) res_cat(df, x="STUDYc//Study type")
\newpage
res_hist
)res_hist(df)
\newpage
wres_time
)wres_time(df)
\newpage
wres_tafd
)wres_tafd(df)
\newpage
wres_tad
)wres_tad(df)
\newpage
wres_pred
)wres_pred(df)
\newpage
wres_cont
)This function is also vectorized in x.
wres_cont(df, x="WT//Weight (kg)")
\newpage
wres_cat
)wres_cat(df, x="STUDYc//Study type")
\newpage
wres_hist
)wres_hist(df)
\newpage
wres_q
)wres_q(df)
\newpage
cwres_time
)cwres_time(df)
\newpage
cwres_tafd
)cwres_tafd(df)
\newpage
cwres_tad
)cwres_tad(df)
\newpage
cwres_cont
)cwres_cont(df, x="WT//Weight (kg)")
Vectorized version
cwres_cont(df, covs) %>% pm_grid(ncol=2)
\newpage
cwres_cat
)cwres_cat(df, x="STUDYc//Study type")
cwres_cat(df, x="STUDYc//Study type", shown=FALSE)
Vectorized version
cwres_cat(df, x = c("STUDYc//Study", "RF//Renal Function"))
\newpage
cwres_hist
)cwres_hist(df)
\newpage
cwres_pred
)cwres_pred(df)
\newpage
cwres_q
)cwres_q(df)
\newpage
npde_time
)npde_time(df)
\newpage
npde_tad
)npde_tad(df)
\newpage
npde_tafd
)npde_tafd(df)
\newpage
npde_pred
)npde_pred(df)
\newpage
npde_cont
)npde_cont(df, "WT")
\newpage
npde_cat
)npde_cat(df, "STUDYc")
\newpage
npde_q
)npde_q(df)
\newpage
npde_hist
)npde_hist(df)
\newpage
etas <- c("ETA1//ETA-CL", "ETA2//ETA-V2", "ETA3//ETA-KA") covs <- c("WT//Weight (kg)", "ALB//Albumin (g/dL)", "SCR//Creatinine (mg/dL)")
\newpage
eta_cont
)Grouped by eta
eta_cont(id, x=covs,y=etas[2]) %>% pm_grid()
Grouped by covariate
eta_cont(id, x=covs[1], y=etas) %>% pm_grid(ncol=2)
\newpage
eta_cat
)p <- eta_cat(id, x="STUDYc//Study type", y=etas)
pm_grid(p)
\newpage
eta_hist
)etas <- c("ETA1//ETA-CL", "ETA2//ETA-V2", "ETA3//ETA-KA") p <- eta_hist(id,etas, bins=10)
pm_grid(p)
\newpage
eta_pairs
)p <- eta_pairs(id, etas)
print(p)
\newpage
dv_time
)dv_time(df, yname = .yname)
\newpage
dv_time(df, yname="MRG1557 (ng/mL)") + facet_wrap(~DOSE, scales="free_x")
NOTE this will not work as you expect; the labels are wrong.
cwres_cat(df, x = "STUDYc") + facet_wrap(~CPc)
The only way to get this right is
cwres_cat(df, x = "STUDYc", shown=FALSE) + facet_wrap(~CPc)
\newpage
dv_time(df, yname="MRG1557 (ng/mL)", log=TRUE) + facet_wrap(~STUDYc)
\newpage
dd1 <- filter(df, ID <= 15) dv_pred_ipred(dd1, nrow = 3, ncol = 3, ylab = "Concentration (ng/mL)", log_y=TRUE)
\newpage
wrap_hist(df, x = c("WT", "ALB", "SCR"), scales = "free", bins=10, ncol=2)
\newpage
wrap_eta_cont(df, y = "ETA1", x = c("WT", "ALB"), scales="free_x")
\newpage
wrap_cont_cat(df, y = c("WT", "CRCL", "AAG"), x = "STUDYc", ncol = 2)
wrap_cont_cont(df, y = "CWRES" , x = c("WT", "CRCL", "AAG"), ncol = 2, scales="free_x")
wrap_res_time(df, y = c("RES", "WRES", "CWRES"), ncol = 2, scales="free_y")
\newpage
wrap_dv_preds(df, ncol=1)
\newpage
wrap_eta_cont( df, y = "ETA1", x = c("WT//Weight (kg)", "ALB//Albumin (g/dL)"), scales="free_x", use_labels=TRUE )
\newpage
This is a simple wrapper around GGally::ggpairs
with some customizations that
have been developed internally at Metrum over the years.
pairs_plot(id, c("WT//Weight", "ALB//Albumin", "SCR//Serum creat"))
Pass a function that customizes the scatter plots on the lower triangle. This function should accept a gg object and add a geom to it
my_lower <- function(p) { p + geom_point(aes(color = STUDYc)) + geom_smooth(se = FALSE, color = "black") }
pairs_plot(id, c("WT", "ALB"), lower_plot = my_lower)
\newpage
pm_scatter(df, x = "TIME", y = c("RES", "WRES", "CWRES"))
\newpage
cont_cat
)cont_cat(id, x="STUDYc", y="WT")
\newpage
cont_hist
)cont_hist(id, x = "WT", bins = 20)
\newpage
split_plot
)p <- split_plot(df, sp="STUDYc", fun=dv_ipred)
pm_grid(p)
\newpage
dv_pred(df, x = "PRED//Concentration ($\\mu$g)")
\newpage
data <- dplyr::tibble(m = rnorm(100), s = rnorm(100), n = rnorm(100)) x <- c("m//$\\mu$", "s//$\\sigma$", "n//$\\nu$") pairs_plot(data,x)
y <- c("WT//Weight (kg)", "BMI//BMI (kg/m$^2$)", "SCR//SCR (g/dL)") wrap_cont_time(df, y = y, use_labels=TRUE)
a <- list(transform="log", breaks = logbr3()) dv_time(df, xs=a)
\newpage
dv_time(df, ys=a, yname="Y-axis name")
If this is too cramped
cont_cat( id, y = c("WT", "BMI", "ALB", "CRCL"), x = "STUDYc" ) %>% pm_grid()
Try this
cont_cat( id, y = c("WT", "BMI", "ALB", "CRCL"), x = "STUDYc" ) %>% map(~.x+coord_flip()) %>% pm_grid()
p <- ggplot(df, aes(PRED,DV)) + geom_point() + pm_theme()
\newpage
layer_s(p)
\newpage
layer_a(p)
layer_h(cwres_time(df,add_layers=FALSE))
\newpage
dv_pred(df, smooth=NULL)
dv_pred(df, abline=NULL)
cwres_time(df, hline = NULL)
dv_pred(df, abline=NULL, smooth = NULL)
\newpage
For example, change the values of argument for geom_smooth
cwres_time(df, smooth = list(method = "loess", span = 0.1, se=TRUE))
dv_pred(df, add_layers=FALSE)
\newpage
Default breaks:
dv_time(df)
\newpage
Break every 3 days
dv_time(df, xby=72)
\newpage
Custom breaks and limits
a <- list(breaks = seq(0,240,48), limits=c(0,240)) dv_time(df, xs=a)
\newpage
wres_time(df) + geom_3s()
\newpage
p <- ggplot(df, aes(IPRED,DV)) + geom_point() p
\newpage
p + pm_theme()
\newpage
p + theme_plain()
\newpage
p + pm_smooth()
\newpage
p + pm_abline()
\newpage
ggplot(df, aes(TIME,CWRES)) + geom_point() + pm_hline()
\newpage
dv_pred(df) + rot_x(angle = 90) + rot_y()
\newpage
We are typically rotating the tick labels on the x-axis and frequently it is convenient to ask for a totally vertical rendering
cwres_cat(df, x = "STUDYc") + facet_wrap(~CPc) + rot_x(vertical = TRUE)
pm_axis_time() pm_axis_tad() pm_axis_tafd() pm_axis_res() pm_axis_wres() pm_axis_cwres() pm_axis_cwresi() pm_axis_npde() pm_axis_dv() pm_axis_pred() pm_axis_ipred()
\newpage
logbr3()
logbr()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.