res_pred | R Documentation |
Residuals or NPDE versus predicted values
res_pred(
df,
x = pm_axis_pred(),
y = pm_axis_res(),
xname = "value",
xs = defx(),
ys = defy(),
...
)
wres_pred(df, ..., y = pm_axis_wres())
cwres_pred(df, ..., y = pm_axis_cwres())
cwresi_pred(df, y = pm_axis_cwresi(), ...)
npde_pred(df, ..., y = pm_axis_npde(), hline = npde_ref())
df |
data frame to plot |
x |
character name for x-axis data |
y |
character name for y-axis data |
xname |
glued into x-axis title |
xs |
see |
ys |
see |
... |
passed to |
hline |
a list of parameters to pass to |
Since this function creates a scatter plot,
both the x
and y
columns must
be numeric.
The y axis name is always the name of the residual
(e.g. "Weighted residual"). Use the xname
argument
to add specific name and or unit to the dependent variable
(see the example).
A loess smooth and a horizontal reference line are layered on the plot.
A single plot.
geom_3s
df <- pmplots_data_obs()
cwresi_pred(df, xname="MyDrug (ng/mL)")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.