library(tidyverse)
data <- read_csv("inst/datasets/analysis1.csv", na = '.')
data <- select(data, -LDOS,-TAFD,-TAD,-MDV)
data <- rename(data, BQL = BLQ)
set.seed(112233)
id <- data %>% filter(SEQ==0) %>% distinct(ID,STUDY,WT,ALB,CRCL)
id <- mutate(
id,
SEX = case_when(
STUDY <=2 ~ rbinom(n(),1, 0.6),
STUDY > 2 ~ rbinom(n(),1,0.45)
),
RACE = sample(1:3, n(), prob = c(0.5, 0.4, 0.1),replace = TRUE),
STUDY = NULL,
FORM = sample(c("tablet", "capsule", "troche"), n(), prob = c(0.8, 0.1, 0.1), replace = TRUE),
WT = ifelse(rbinom(n(),1,0.01) ==1, NA_real_, WT),
ALB = ifelse(rbinom(n(),1,0.02) ==1, NA_real_, ALB),
CRCL = ifelse(rbinom(n(),1,0.07)==1, NA_real_,CRCL),
ASIAN = sample(c("Asian", "non-Asian"), n(), prob = c(0.4,0.6), replace = TRUE)
)
data$WT <- NULL
data$ALB <- NULL
data$CRCL <- NULL
data <- left_join(data,id)
set.seed(22929)
data <- mutate(
data,
BQL = rbinom(n(),1, 0.035),
DV = ifelse(BQL==1, NA_real_, DV)
)
# pd endpoint
end1 <- filter(data,SEQ==1,STUDY>2) %>% group_by(ID) %>% slice(1) %>% ungroup()
end1 <- mutate(end1,SEQ=2)
set.seed(282829)
set.seed(1009)
end2 <- filter(data,SEQ==1,STUDY > 2) %>% group_by(ID) %>% slice(sample(seq(n()),3)) %>% ungroup()
end2 <- mutate(end2,SEQ=3)
end2 <- mutate(
end2,
BQL = rbinom(n(),1,0.02),
DV = ifelse(BQL==1, NA_real_, DV)
)
data <- bind_rows(data,end1,end2) %>% arrange(ID,TIME,SEQ)
data <- ungroup(data)
set.seed(112022)
pmiss <- 0.01
data <- mutate(
data,
DV = ifelse(rbinom(n(),1,pmiss)==1, NA_real_, DV)
)
data <- mutate(data, STUDYN = STUDY)
spec <- yspec::ys_load("inst/datasets/analysis1.yml")
data <- select(data, names(spec))
data <- yspec::yspec_add_factors(data,spec,RF,SEX,CP,SEQ,STUDY,FORM,ASIAN,.suffix="f")
saveRDS(file = "inst/datasets/all.RDS",data)
id <- distinct(data,ID,.keep_all=TRUE)
saveRDS(file = "inst/datasets/id.RDS",id)
obs <- filter(data,SEQ > 0)
saveRDS(file = "inst/datasets/obs.RDS",obs)
data <- pmtables:::data("id")
data <- group_by(data,STUDYf,SEXf) %>%
summarise(WT = mean(WT,na.rm=TRUE), SCR = mean(SCR,na.rm=TRUE),
ALB = mean(ALB,na.rm=TRUE), N = n(), .groups="drop")
data <- mutate(data, across(WT:ALB, .fns=sig))
saveRDS(file = "inst/datasets/ptdata.RDS", data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.