# From: https://github.com/FelSiq/DBCV
#
# Dataset Python (Scipy's Kruskal's) Python (Translated MST algorithm) MATLAB
# dataset_1.txt 0.8566 0.8576 0.8576
# dataset_2.txt 0.5405 0.8103 0.8103
# dataset_3.txt 0.6308 0.6319 0.6319
# dataset_4.txt 0.8456 0.8688 0.8688
#
# Original MATLAB implementation is at:
# https://github.com/pajaskowiak/dbcv/tree/main/data
res <- c()
data(Dataset_1)
x <- Dataset_1[, c("x", "y")]
class <- Dataset_1$class
#clplot(x, class)
(db <- dbcv(x, class, metric = "sqeuclidean"))
res["ds1"] <- db$score
#dsc [0.00457826 0.00457826 0.0183068 0.0183068 ]
#dspc [0.85627898 0.85627898 0.85627898 0.85627898]
#vcs [0.99465331 0.99465331 0.97862052 0.97862052]
#0.8575741400490697
data(Dataset_2)
x <- Dataset_2[, c("x", "y")]
class <- Dataset_2$class
#clplot(x, class)
(db <- dbcv(x, class, metric = "sqeuclidean"))
res["ds2"] <- db$score
#dsc [19.06151967 15.6082 83.71522964 68.969 ]
#dspc [860.2538 501.4376 501.4376 860.2538]
#vcs [0.97784198 0.9688731 0.83304956 0.91982715]
#0.8103343589093096
data(Dataset_3)
x <- Dataset_3[, c("x", "y")]
class <- Dataset_3$class
#clplot(x, class)
(db <- dbcv(x, class, metric = "sqeuclidean"))
res["ds3"] <- db$score
data(Dataset_4)
x <- Dataset_4[, c("x", "y")]
class <- Dataset_4$class
#clplot(x, class)
(db <- dbcv(x, class, metric = "sqeuclidean"))
res["ds4"] <- db$score
cbind(dbscan = round(res, 2), MATLAB = c(0.85, 0.81, 0.63, 0.87))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.