| DSD_MG | R Documentation | 
Creates an evolving DSD that consists of several MGC, each representing a moving cluster.
DSD_MG(dimension = 2, ..., labels = NULL, description = NULL)
add_cluster(x, c, label = NULL)
get_clusters(x)
remove_cluster(x, i)
## S3 method for class 'DSD_MG'
add_cluster(x, c, label = NULL)
| dimension | the dimension of the DSD object | 
| ... | initial set of MGCs | 
| description | An optional string used by  | 
| x | A  | 
| c | The cluster that should be added to the  | 
| label,labels | integer representing the cluster label.  | 
| i | The index of the cluster that should be removed from the
 | 
This DSD is able to generate complex datasets that are able to evolve over a period of time. Its behavior is determined by as set of MGCs, each representing a moving cluster.
Matthew Bolanos
MGC for types of moving clusters.
Other DSD: 
DSD(),
DSD_BarsAndGaussians(),
DSD_Benchmark(),
DSD_Cubes(),
DSD_Gaussians(),
DSD_Memory(),
DSD_Mixture(),
DSD_NULL(),
DSD_ReadDB(),
DSD_ReadStream(),
DSD_Target(),
DSD_UniformNoise(),
DSD_mlbenchData(),
DSD_mlbenchGenerator(),
DSF(),
animate_data(),
close_stream(),
get_points(),
plot.DSD(),
reset_stream()
### create an empty DSD_MG
stream <- DSD_MG(dim = 2)
stream
### add two clusters
c1 <- MGC_Random(density = 50, center = c(50, 50), parameter = 1)
add_cluster(stream, c1)
stream
c2 <- MGC_Noise(density = 1, range = rbind(c(-20, 120), c(-20, 120)))
add_cluster(stream, c2)
stream
get_clusters(stream)
get_points(stream, n = 5)
plot(stream, xlim = c(-20,120), ylim = c(-20, 120))
if (interactive()) {
animate_data(stream, n = 5000, xlim = c(-20, 120), ylim = c(-20, 120))
}
### remove cluster 1
remove_cluster(stream, 1)
stream
get_clusters(stream)
plot(stream, xlim = c(-20, 120), ylim = c(-20, 120))
### create a more complicated cluster structure (using 2 clusters with the same
### label to form an L shape)
stream <- DSD_MG(dim = 2,
  MGC_Static(density = 10, center = c(.5, .2),   par = c(.4, .2),   shape = Shape_Block),
  MGC_Static(density = 10, center = c(.6, .5),   par = c(.2, .4),   shape = Shape_Block),
  MGC_Static(density = 5,  center = c(.39, .53), par = c(.16, .35), shape = Shape_Block),
  MGC_Noise( density = 1,  range = rbind(c(0,1), c(0,1))),
  labels = c(1, 1, 2, NA)
  )
stream
plot(stream, xlim = c(0, 1), ylim = c(0, 1))
### simulate the clustering of a splitting cluster
c1 <- MGC_Linear(dim = 2, keyframelist = list(
  keyframe(time = 1,  dens = 20, center = c(0,0),   param = 10),
  keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
  keyframe(time = 100,dens = 10, center = c(50,100),param = 10)
))
### Note: Second cluster appearch at time=50
c2 <- MGC_Linear(dim = 2, keyframelist = list(
  keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
  keyframe(time = 100,dens = 10, center = c(100,50),param = 10)
))
stream <- DSD_MG(dim = 2, c1, c2)
stream
dbstream <- DSC_DBSTREAM(r = 20, lambda = 0.1)
if (interactive()) {
purity <- animate_cluster(dbstream, stream, n = 2500, type = "micro",
  xlim = c(-10, 120), ylim = c(-10, 120), measure = "purity", horizon = 100)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.