View source: R/calculate_energy.R
calculate_energy | R Documentation |
Calculate mean energy
calculate_energy(
pattern,
weights = c(1, 1),
return_mean = FALSE,
verbose = TRUE
)
pattern |
List with reconstructed patterns. |
weights |
Vector with weights used to calculate energy. The first number refers to Gest(r), the second number to pcf(r). |
return_mean |
Logical if the mean energy is returned. |
verbose |
Logical if progress report is printed. |
The function calculates the mean energy (or deviation) between the observed pattern and all reconstructed patterns (for more information see Tscheschel & Stoyan (2006) or Wiegand & Moloney (2014)). The pair correlation function and the nearest neighbour distance function are used to describe the patterns.
vector
Kirkpatrick, S., Gelatt, C.D.Jr., Vecchi, M.P., 1983. Optimization by simulated annealing. Science 220, 671–680. <https://doi.org/10.1126/science.220.4598.671>
Tscheschel, A., Stoyan, D., 2006. Statistical reconstruction of random point patterns. Computational Statistics and Data Analysis 51, 859–871. <https://doi.org/10.1016/j.csda.2005.09.007>
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton. ISBN 978-1-4200-8254-8
plot_energy
reconstruct_pattern
fit_point_process
pattern_random <- fit_point_process(species_a, n_random = 19)
calculate_energy(pattern_random)
calculate_energy(pattern_random, return_mean = TRUE)
## Not run:
marks_sub <- spatstat.geom::subset.ppp(species_a, select = dbh)
marks_recon <- reconstruct_pattern_marks(pattern_random$randomized[[1]], marks_sub,
n_random = 19, max_runs = 1000)
calculate_energy(marks_recon, return_mean = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.