#' Collect Variable Importance Metrics for Covariates Used in Random Forest Adjustment
#'
#' This function returns variable importance metrics (either "impurity" or "permutation") for each of the covariates
#' included in random forest adjustment estimation with respect to the response
#' variable and the explanatory variable of interest.
#'
#' @param rfa an `rfa()` fitted object
#'
#' @details To return importance metrics, in `rfa()` the argument `importance` must be set to either "impurity" or "permutation" (quoted).
#'
#' @export
get_importance <-
function(
rfa
) {
# return error if importance wasn't specified by user in rfa()
if(rfa$yrf$importance.mode == "none") {
stop("Importance was not specified in rfa(). Please specify either:\n importance = 'impurity' OR importance = 'permutation'.")
}
# return message specifying the type of importance metric being returned
message(paste0("Returning importance type: ", rfa$yrf$importance.mode))
# get variable importance for response
yimp <- rfa$yrf$variable.importance
# get variable importance for explanatory variable
ximp <- rfa$xrf$variable.importance
# get covariate names
varnames <- colnames(rfa$covmat)
# make data frame to return
imptab <- data.frame(
term = varnames,
response = yimp,
predictor = ximp,
row.names = NULL
)
return(imptab)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.