Description Details Author(s) See Also Examples
This package provides functions for fitting LPM, a latent probit model to characterize relationship among complex traits using summary statistics from multiple GWASs and functional annotations.
Package: | LPM |
Type: | Package |
Version: | 0.1.0 |
Date: | 2018-07-10 |
License: | GPL (>= 2) |
LazyLoad: | yes |
This package contains three functions LPM
, bLPM
and bLPM_add
to fit LPM and four functions post
, assoc
, test_rho
and test_beta
to make statistical inference for risk SNPs, relationship test and hypothesis testing of annotation enrichment.
Jingsi Ming and Can Yang
Maintainer: Jingsi Ming <jsming@ust.hk>
LPM
, bLPM
, bLPM_add
, post
, assoc
, test_rho
, test_beta
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(LPM)
data(ExampleData)
bLPMfit_first3 <- bLPM(ExampleData$data[1:3], X = ExampleData$X, coreNum = 2)
bLPMfit <- bLPM_add(ExampleData$data[1:3], ExampleData$data[4], X = ExampleData$X, bLPMfit_first3, coreNum = 2)
LPMfit <- LPM(bLPMfit)
posterior1 <- post(ExampleData$data[1], X = ExampleData$X, id = 1, LPMfit)
posterior13 <- post(ExampleData$data[c(1, 3)], X = ExampleData$X, id = c(1, 3), LPMfit)
assoc.SNP <- assoc(posterior1, FDRset = 0.1, fdrControl = "global")
p_value_test_rho <- test_rho(bLPMfit)
result_test_beta <- test_beta(ExampleData$data, X = ExampleData$X, id = 1, LPMfit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.