knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

jasco2

Warning: This package is still under development !

A package for easy Spectrophotometer data handling.

Installation

You can install the released version of jasco2 from GitHub.

devtools::install_github("mirkko-hub/jasco2")

Example

Easy data handling of Jasco spectrophotometer (JASCO Corp., V-560, Rev. 1.00) files - you only need three things:

Import files
library(tidyverse, warn.conflicts = FALSE)
library(magrittr, warn.conflicts = FALSE)
library(jasco2)

Given a bunch of .txt files from Jasco Spec,

files <- system.file("extdata", paste0(1:28, ".txt") , package = "jasco2", mustWork = TRUE)
head(files)

... some design tibble,

design <- readr::read_csv(system.file("extdata", "design.csv", package = "jasco2", mustWork = TRUE))
head(design)

... and and a treatment tibble,

treatment <- readr::read_csv(system.file("extdata", "treatment.csv", package = "jasco2", mustWork = TRUE))
head(treatment)

we can easily combine all information in a tidy tibble, that facilitates further analysis!

df <- jasco_tibble(filenames = files, design, treatment, rmflag = FALSE, rmblank = TRUE)
head(df)
Process data

In the given example, we performed an enzyme coupled ATP hydrolysis assay. So we measured NADH oxidation (the consumption of NADH is recorded at 340 nm) as a response to ATP hydrolysis via the depicted reaction - each oxidized NADH molecule reports the hydrolysis of one molecule of ATP.

Let's say we want to calculate turnover rates of the ATPase of interest. All we need to do is:

(with optional summary by specified groups)

like so:

data <- df %>%
  convert_absorbance(., "NADH") %>%
  jasco_extract_lm(., response = NADH, predictor = Time_s, min = 75, max = 175)
head(data)

params <- data %>%
  jasco_extract_params(., .bgcorr = FALSE, .protein_uM = 6, .unit = "sec", .factor = -1, Group)
head(params$data)
head(params$summary)
Plot data
ggplot() +
  geom_point(data = data %>% unnest(data) %>% filter(., Label != "Control"),
             mapping = aes(x = Time_s, y = NADH), size = 0.1) +
  geom_path(data = data %>% unnest(augment) %>% filter(., Label != "Control"),
            mapping = aes(x = Time_s, y = .fitted, group = Exp_ID), colour = "blue") +
  facet_grid(Label ~ Protein)
ggplot() +
  geom_boxplot(data = params$data %>% filter(Label != "Control"), aes(x = Label, y = turnover, colour = Protein)) +
  geom_point(data = params$data %>% filter(Label != "Control"), aes(x = Label, y = turnover, colour = Protein)) +
  facet_grid(. ~ Protein)


mirkko-hub/jasco2 documentation built on Jan. 1, 2021, 2:53 p.m.