knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
Warning: This package is still under development !
A package for easy Spectrophotometer data handling.
You can install the released version of jasco2 from GitHub.
devtools::install_github("mirkko-hub/jasco2")
Easy data handling of Jasco spectrophotometer (JASCO Corp., V-560, Rev. 1.00) files - you only need three things:
library(tidyverse, warn.conflicts = FALSE) library(magrittr, warn.conflicts = FALSE) library(jasco2)
Given a bunch of .txt files from Jasco Spec,
files <- system.file("extdata", paste0(1:28, ".txt") , package = "jasco2", mustWork = TRUE) head(files)
... some design tibble,
design <- readr::read_csv(system.file("extdata", "design.csv", package = "jasco2", mustWork = TRUE)) head(design)
... and and a treatment tibble,
treatment <- readr::read_csv(system.file("extdata", "treatment.csv", package = "jasco2", mustWork = TRUE)) head(treatment)
we can easily combine all information in a tidy tibble, that facilitates further analysis!
df <- jasco_tibble(filenames = files, design, treatment, rmflag = FALSE, rmblank = TRUE) head(df)
In the given example, we performed an enzyme coupled ATP hydrolysis assay. So we measured NADH oxidation (the consumption of NADH is recorded at 340 nm) as a response to ATP hydrolysis via the depicted reaction - each oxidized NADH molecule reports the hydrolysis of one molecule of ATP.
Let's say we want to calculate turnover rates of the ATPase of interest. All we need to do is:
(with optional summary by specified groups)
like so:
data <- df %>% convert_absorbance(., "NADH") %>% jasco_extract_lm(., response = NADH, predictor = Time_s, min = 75, max = 175) head(data) params <- data %>% jasco_extract_params(., .bgcorr = FALSE, .protein_uM = 6, .unit = "sec", .factor = -1, Group) head(params$data) head(params$summary)
ggplot() + geom_point(data = data %>% unnest(data) %>% filter(., Label != "Control"), mapping = aes(x = Time_s, y = NADH), size = 0.1) + geom_path(data = data %>% unnest(augment) %>% filter(., Label != "Control"), mapping = aes(x = Time_s, y = .fitted, group = Exp_ID), colour = "blue") + facet_grid(Label ~ Protein)
ggplot() + geom_boxplot(data = params$data %>% filter(Label != "Control"), aes(x = Label, y = turnover, colour = Protein)) + geom_point(data = params$data %>% filter(Label != "Control"), aes(x = Label, y = turnover, colour = Protein)) + facet_grid(. ~ Protein)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.