library(tidyverse)
library(tidygeocoder)
library(plotly)
test_pm25 %>%
ggplot(aes(year, value, group = id)) +
geom_path()
set.seed(1)
test_pm25 %>%
tibble() %>%
select(id) %>%
distinct() %>%
slice_sample(n = 20) %>%
write_csv("data-raw/station_sample.csv")
# scratch -----------------------------------------------------------------
library(tidyverse)
library(tidygeocoder)
# rest <- read_csv("../../Downloads/alco-restuarant-violations.csv")
rest %>% glimpse()
rest_sub <-
rest %>%
filter(city == "Pittsburgh") %>%
filter(inspect_dt > as.Date("2018-01-01")) %>%
group_by(id) %>%
filter(n() > 10) %>%
ungroup() %>%
filter(str_detect(description, "Restaurant")) %>%
mutate(chain = if_else(str_detect(description, "Chain"), TRUE, FALSE)) %>%
mutate(liquor = if_else(str_detect(description, "Liquor"), TRUE, FALSE)) %>%
filter(rating == "V")
rest_sub %>%
mutate(
v_level = case_when(
low ~ 1,
medium ~ 2,
high ~ 3
)) %>%
group_by(id) %>%
arrange(inspect_dt) %>%
mutate(cs = cumsum(v_level)) %>%
ungroup() %>%
filter(!is.na(cs)) %>%
ggplot(aes(inspect_dt, cs, group = id)) +
geom_path()
set.seed(1)
ids <-
rest_sub$id %>%
unique() %>%
sample(10)
test_rest <-
rest_sub %>%
filter(is.element(id, ids)) %>%
mutate(
v_level = case_when(
low ~ 1,
medium ~ 2,
high ~ 3
)) %>%
unite(street_address, c("num", "street"), sep = " ") %>%
unite(state_zip, c("state", "zip"), sep = " ") %>%
unite(address, c("street_address", "city", "state_zip"), sep = ", ")
test_rest %>%
write_csv("data-raw/test_rest.csv")
test_test <- test_rest %>%
group_by(id) %>%
arrange(inspect_dt) %>%
mutate(cs = cumsum(v_level)) %>%
ungroup()
test_test %>% View()
test_test %>%
ggplot(aes(inspect_dt, cs, group = id)) +
geom_path()
test_rest_address <-
test_rest %>%
select(id, facility_name, address) %>%
distinct()
test_rest_address %>%
write_csv("data-raw/test_rest_address.csv")
test_rest_address <-
read_csv("data-raw/test_rest_address.csv")
test_rest_address %>% View()
test_rest_geo <- test_rest_address %>%
geocode(address, method = 'osm', lat = latitude , long = longitude)
test_rest_geo
test_rest_geo_cen <- test_rest_address %>%
geocode(address, method = 'census', lat = latitude , long = longitude)
test_rest_geo_cen
leftover <- test_rest_geo_cen %>%
filter(latitude %>% is.na()) %>%
geocode(
address,
method = 'census',
lat = latitude ,
long = longitude,
mode = 'single',
full_results = TRUE,
return_type = 'geographies'
)
leftover %>% View()
test_rest_geo_goo <- test_rest_address %>%
geocode(address = address, method = "google", lat = latitude , long = longitude)
test_rest_geo_goo
library(dplyr, warn.conflicts = FALSE)
library(tidygeocoder)
# create a dataframe with addresses
some_addresses <- tibble::tribble(
~name, ~addr,
"White House", "1600 Pennsylvania Ave NW, Washington, DC",
"Transamerica Pyramid", "600 Montgomery St, San Francisco, CA 94111",
"Willis Tower", "233 S Wacker Dr, Chicago, IL 60606"
)
# geocode the addresses
lat_longs <- some_addresses %>%
geocode(addr, method = 'google', lat = latitude , long = longitude)
#> Passing 3 addresses to the Nominatim single address geocoder
#> Query completed in: 3 seconds
lat_longs
some_addresses <- tibble::tribble(
~name, ~addr,
"White House", "1600 Pennsylvania Ave NW, Washington, DC",
"Transamerica Pyramid", "600 Montgomery St, San Francisco, CA 94111",
"Willis Tower", "233 S Wacker Dr, Chicago, IL 60606"
)
# geocode the addresses
lat_longs <- some_addresses %>%
geocode(addr, method = 'google', lat = latitude , long = longitude)
lat_longs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.