View source: R/postMonitoring.R
| crossBoundCumProb | R Documentation |
Computes proportions of simulated trials that crossed either an efficacy or a non-efficacy stopping boundary by analysis 1,…,\code{nAnalyses} using an .RData output file from monitorTrial. An event-driven 2-arm trial design is assumed.
crossBoundCumProb(
boundType = c("eff", "nonEff"),
nAnalyses,
monitorTrialFile,
monitorTrialDir = NULL
)
boundType |
a character string specifying if the one-sided null hypothesis is of the form H_0: θ ≥q θ_0 ( |
nAnalyses |
a numeric value specifying the number of analyses |
monitorTrialFile |
either a character string specifying an |
monitorTrialDir |
a character string specifying a path to |
A numeric vector of estimated cumulative probabilities of crossing the specified boundary by analysis 1,…,\code{nAnalyses}.
simData <- simTrial(N=c(1000, 1000), aveVE=c(0, 0.4),
VEmodel="half", vePeriods=c(1, 27, 79), enrollPeriod=78,
enrollPartial=13, enrollPartialRelRate=0.5, dropoutRate=0.05,
infecRate=0.06, fuTime=156, visitSchedule=seq(0, 156, by=4),
missVaccProb=0.05, VEcutoffWeek=26, nTrials=5,
stage1=78, randomSeed=300)
monitorData <- monitorTrial(dataFile=simData, stage1=78, stage2=156,
harmMonitorRange=c(10,75), harmMonitorAlpha=0.05,
effCohort=list(timingCohort=list(lagTime=0),
times=c(75, 150),
timeUnit="counts",
lagTime=0,
estimand="cox",
nullVE=0,
nominalAlphas=c(0.001525, 0.024501)),
nonEffCohorts=list(timingCohort=list(lagTime=0),
times=c(75, 150),
timeUnit="counts",
cohort1=list(lagTime=0,
estimand="cox",
nullVE=0.4,
nominalAlphas=c(0.001525, 0.024501))),
lowerVEnoneff=0, highVE=1, lowerVEuncPower=0,
alphaHigh=0.05, alphaUncPower=0.05,
verbose=FALSE)
crossBoundCumProb(boundType="eff", nAnalyses=2, monitorTrialFile=monitorData)
crossBoundCumProb(boundType="nonEff", nAnalyses=2, monitorTrialFile=monitorData)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.