| eposvd | R Documentation | 
Pre-processing a X-dataset by external parameter orthogonalization (EPO; Roger et al 2003). The objective is to remove from a dataset X (n, p) some "detrimental" information (e.g. humidity effect) represented by a dataset D (m, p). 
EPO consists in orthogonalizing the row observations of X to the detrimental sub-space defined by the first nlv non-centered PCA loadings vectors of D. 
Function eposvd uses a SVD factorization of D and returns M (p, p) the orthogonalization matrix, and P the considered loading vectors of D. 
The data corrected from the detrimental information D can be computed by X_corrected = X * M.
eposvd(D, nlv)| D | A dataset   | 
| nlv | The number of first loadings vectors of  | 
See the examples.
Roger, J.-M., Chauchard, F., Bellon-Maurel, V., 2003. EPOâPLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems 66, 191â204. https://doi.org/10.1016/S0169-7439(03)00051-0
Roger, J.-M., Boulet, J.-C., 2018. A review of orthogonal projections for calibration. Journal of Chemometrics 32, e3045. https://doi.org/10.1002/cem.3045
n <- 4 ; p <- 8 
X <- matrix(rnorm(n * p), ncol = p)
m <- 3
D <- matrix(rnorm(m * p), ncol = p)    # Detrimental information
nlv <- 2
res <- eposvd(D, nlv = nlv)
M <- res$M       # orthogonalization matrix
P <- res$P       # detrimental directions matrix (loadings of D = columns of P)
M
P
## The matrix corrected from D can be computed by:
## X_corr <- X %*% M    
## Rows of the corrected matrix X_corr
## are orthogonal to the loadings vectors (columns of P):
## X_corr %*% P 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.