| euclsq | R Documentation | 
—– Matrix (n, m) of distances between row observations of two datasets X (n, p) and Y (m, p)
- euclsq: Squared Euclidean distance
- mahsq: Squared Mahalanobis distance
—– Matrix (n, 1) of distances between row observations of a dataset X (n, p) and a vector p (n)
- euclsq_mu: Squared Euclidean distance
- mahsq_mu: Squared Euclidean distance
euclsq(X, Y = NULL)
euclsq_mu(X, mu)
mahsq(X, Y = NULL, Uinv = NULL)
mahsq_mu(X, mu, Uinv = NULL)
X | 
 X-data (  | 
Y | 
 Data (  | 
mu | 
 Vector (  | 
Uinv | 
 For Mahalanobis distance. The inverse of a Choleski factorization matrix of the covariance matrix of   | 
A distance matrix.
n <- 5 ; p <- 3
X <- matrix(rnorm(n * p), ncol = p)
euclsq(X)
as.matrix(stats::dist(X)^2)
euclsq(X, X)
Y <- X[c(1, 3), ]
euclsq(X, Y)
euclsq_mu(X, Y[2, ])
i <- 3
euclsq(X, X[i, , drop = FALSE])
euclsq_mu(X, X[i, ])
S <- cov(X) * (n - 1) / n
i <- 3
mahsq(X)[i, , drop = FALSE]
stats::mahalanobis(X, X[i, ], S)
mahsq(X)
Y <- X[c(1, 3), ]
mahsq(X, Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.