Description Usage Arguments Value Examples
View source: R/MeasureClassifConfusion.R
Based on a 2x2 confusion matrix for binary classification problems, allows to calculate various performance measures. Implemented are the following measures based on https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram:
"tp": True Positives.
"fn": False Negatives.
"fp": False Positives.
"tn": True Negatives.
"tpr": True Positive Rate.
"fnr": False Negative Rate.
"fpr": False Positive Rate.
"tnr": True Negative Rate.
"ppv": Positive Predictive Value.
"fdr": False Discovery Rate.
"for": False Omission Rate.
"npv": Negative Predictive Value.
"dor": Diagnostic Odds Ratio.
"f1": F1 Measure.
"precision": Alias for "ppv".
"recall": Alias for "tpr".
"sensitivity": Alias for "tpr".
"specificity": Alias for "tnr".
If the denominator is 0, the returned score is NA.
1 | confusion_measures(m, type = NULL)
|
m |
:: |
type |
:: |
(named numeric()) of confusion measures.
1 2 3 4 | task = tsk("german_credit")
learner = lrn("classif.rpart")
p = learner$train(task)$predict(task)
round(confusion_measures(p$confusion), 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.