source("setup.R", local = TRUE)
library("mlr3learners")
learner = mlr3::lrn("classif.ranger")
learner$param_set$values$mtry = to_tune(1, 4)
learner$param_set$values$max.depth= to_tune(1, 4)
learner$param_set$values$num.trees = to_tune(p_int(1, 1024, tags = "budget", logscale = TRUE))
ti = mlr3tuning::TuningInstanceSingleCrit$new(
task = mlr3::tsk("iris"),
learner = learner,
resampling = mlr3::rsmp("holdout"),
measure = mlr3::msr("classif.acc"),
terminator = bbotk::trm("gens", generations = 10)
)
smash_tune <- mlr3tuning::tnr("smash", filtor = ftr("surprog", surrogate_learner = mlr3::lrn("regr.ranger")),
mu = 10, survival_fraction = 0.5
)
set.seed(1)
smash_tune$optimize(ti)
expect_set_equal(names(ti$result_x_domain), c("mtry", "max.depth", "num.trees"))
expect_true(ti$result$classif.acc > 0.9)
ti$archive$data
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.