#' @title Root Relative Squared Error
#'
#' @details
#' The Root Relative Squared Error is defined as \deqn{
#' \sqrt{\frac{\sum_{i=1}^n \left( t_i - r_i \right)^2}{\sum_{i=1}^n \left( t_i - \bar{t} \right)^2}},
#' }{
#' sqrt(sum((t - r)^2) / sum((t - mean(t))^2)),
#' }
#' where \eqn{\bar{t} = \sum_{i=1}^n t_i}.
#'
#' Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.
#'
#' This measure is undefined for constant \eqn{t}.
#'
#' @templateVar mid rrse
#' @template regr_template
#'
#' @inheritParams regr_params
#' @template regr_example
#' @export
rrse = function(truth, response, na_value = NaN, ...) {
assert_regr(truth, response = response, na_value = na_value)
v = var(truth)
if (v < TOL) {
return(na_value)
}
sqrt(sum(.se(truth, response)) / (v * (length(truth) - 1L)))
}
#' @include measures.R
add_measure(rrse, "Root Relative Squared Error", "regr", 0, Inf, TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.