Description Super class Active bindings Methods
This object wraps the predictions returned by a learner of class LearnerMultiOutput, i.e. the predicted partition and MultiOutputer probability.
mlr3::Prediction -> PredictionMultioutput
predictions(list())
Access the stored predictions.
missing(integer())
Returns row_ids for which the predictions are missing or incomplete.
row_ids(integer())
Access the stored row_ids.
new()Creates a new instance of this R6 class.
PredictionMultioutput$new( task = NULL, row_ids = task$row_ids, predictions = list(), check = TRUE, ... )
task(TaskMultioutput)
Task, used to extract defaults for row_ids.
row_ids(integer())
Row ids of the predicted observations, i.e. the row ids of the test set.
predictions(list())
(Named) list of per-target predictions. Used to construct the Prediction-object.
check(logical(1))
If TRUE, performs argument checks and predict type conversions.
...(list())
(Named) list of per-target truths. Only used for compatibility with Prediction$new().
print()Printer for the Prediction object.
PredictionMultioutput$print(...)
...(any)
Not used.
score_separate()Returns scores for each measure separately.
PredictionMultioutput$score_separate(measures, task)
measureslist
List of MeasureMultioutput to score.
taskTaskMultioutput
Task to use for scoring
A numeric() vector of scores.
clone()The objects of this class are cloneable with this method.
PredictionMultioutput$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.