PredictionMultioutput: Prediction Object for MultiOutputer Analysis

Description Super class Active bindings Methods

Description

This object wraps the predictions returned by a learner of class LearnerMultiOutput, i.e. the predicted partition and MultiOutputer probability.

Super class

mlr3::Prediction -> PredictionMultioutput

Active bindings

predictions

(list())
Access the stored predictions.

missing

(integer())
Returns row_ids for which the predictions are missing or incomplete.

row_ids

(integer())
Access the stored row_ids.

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
PredictionMultioutput$new(
  task = NULL,
  row_ids = task$row_ids,
  predictions = list(),
  check = TRUE,
  ...
)
Arguments
task

(TaskMultioutput)
Task, used to extract defaults for row_ids.

row_ids

(integer())
Row ids of the predicted observations, i.e. the row ids of the test set.

predictions

(list())
(Named) list of per-target predictions. Used to construct the Prediction-object.

check

(logical(1))
If TRUE, performs argument checks and predict type conversions.

...

(list())
(Named) list of per-target truths. Only used for compatibility with Prediction$new().


Method print()

Printer for the Prediction object.

Usage
PredictionMultioutput$print(...)
Arguments
...

(any)
Not used.


Method score_separate()

Returns scores for each measure separately.

Usage
PredictionMultioutput$score_separate(measures, task)
Arguments
measures

list
List of MeasureMultioutput to score.

task

TaskMultioutput
Task to use for scoring

Returns

A numeric() vector of scores.


Method clone()

The objects of this class are cloneable with this method.

Usage
PredictionMultioutput$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


mlr-org/mlr3multioutput documentation built on Nov. 22, 2020, 1:17 p.m.