Description Super class Active bindings Methods
This object wraps the predictions returned by a learner of class LearnerMultiOutput, i.e. the predicted partition and MultiOutputer probability.
mlr3::Prediction
-> PredictionMultioutput
predictions
(list()
)
Access the stored predictions.
missing
(integer()
)
Returns row_ids
for which the predictions are missing or incomplete.
row_ids
(integer()
)
Access the stored row_ids.
new()
Creates a new instance of this R6 class.
PredictionMultioutput$new( task = NULL, row_ids = task$row_ids, predictions = list(), check = TRUE, ... )
task
(TaskMultioutput)
Task, used to extract defaults for row_ids
.
row_ids
(integer()
)
Row ids of the predicted observations, i.e. the row ids of the test set.
predictions
(list()
)
(Named) list of per-target predictions. Used to construct the Prediction
-object.
check
(logical(1)
)
If TRUE
, performs argument checks and predict type conversions.
...
(list()
)
(Named) list of per-target truths. Only used for compatibility with Prediction$new()
.
print()
Printer for the Prediction object.
PredictionMultioutput$print(...)
...
(any
)
Not used.
score_separate()
Returns scores for each measure separately.
PredictionMultioutput$score_separate(measures, task)
measures
list
List of MeasureMultioutput
to score.
task
TaskMultioutput
Task to use for scoring
A numeric()
vector of scores.
clone()
The objects of this class are cloneable with this method.
PredictionMultioutput$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.